Fast alternating direction algorithms for sparse portfolio model via sorted l1-norm

被引:0
|
作者
Liu, Wenxiu [1 ]
Xu, Lijun [1 ]
Zhou, Yijia [2 ]
Yu, Bo [3 ]
机构
[1] Dalian Maritime Univ, Dalian 116026, Liaoning, Peoples R China
[2] Dalian Neusoft Univ Informat, Dalian, Liaoning, Peoples R China
[3] Dalian Univ Technol, Dalian, Liaoning, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Fast ADMM; fast ADMM with restart; sparse portfolio; sort l(1)-norm penalty; VARIABLE SELECTION; RISK;
D O I
10.3233/JIFS-234381
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose two novel Alternating Direction Method of Multipliers (ADMM) algorithms for the sparse portfolio problem via sorted l(1)-norm penalization (SLOPE). The first algorithm (FADMM) is presented by adding a prediction-correction step to the classic ADMM framework. Since the problem is not strongly convex, the second fast ADMM (FADMMR) is proposed by utilizing both prediction-correction step and restarting rules. Numerical experiments show that the FADMMR algorithm converges faster than the FADMM algorithm and ADMM algorithm when tuning parameters are relatively small. On the other hand, when tuning parameters are relative large, the FADMM algorithm performs better than the FADMMR algorithm and ADMM algorithm. The FADMM algorithm and FADMMR algorithm converge faster than the ADMM algorithm in terms of convergence time for different sizes of tuning parameters. For large-scale portfolio problem, the proposed algorithms have highly performance as well. Finally, empirical analysis on five datasets of stocks index show that the proposed algorithms are efficient and superior for solving sparse portfolio problems via SLOPE.
引用
收藏
页码:11853 / 11872
页数:20
相关论文
共 50 条
  • [1] Sparse portfolio selection via the sorted l1-Norm
    Kremer, Philipp J.
    Lee, Sangkyun
    Bogdan, Malgorzata
    Paterlini, Sandra
    [J]. JOURNAL OF BANKING & FINANCE, 2020, 110
  • [2] Sparse index clones via the sorted l1-Norm
    Kremer, Philipp J.
    Brzyski, Damian
    Bogdan, Malgorzata
    Paterlini, Sandra
    [J]. QUANTITATIVE FINANCE, 2022, 22 (02) : 349 - 366
  • [3] Fast sparse representation model for l1-norm minimisation problem
    Peng, C. Y.
    Li, J. W.
    [J]. ELECTRONICS LETTERS, 2012, 48 (03) : 154 - U42
  • [4] L1-norm least squares support vector regression via the alternating direction method of multipliers
    Ye Y.-F.
    Ying C.
    Jiang Y.-X.
    Li C.-N.
    [J]. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2017, 21 (06) : 1017 - 1025
  • [5] Bregman iteration algorithm for sparse nonnegative matrix factorizations via alternating l1-norm minimization
    Lingling Jiang
    Haiqing Yin
    [J]. Multidimensional Systems and Signal Processing, 2012, 23 : 315 - 328
  • [6] Sparse Blind Source Separation via l1-Norm Optimization
    Georgiou, Tryphon T.
    Tannenbaum, Allen
    [J]. PERSPECTIVES IN MATHEMATICAL SYSTEM THEORY, CONTROL, AND SIGNAL PROCESSING, 2010, 398 : 321 - +
  • [7] Comparison of l1-Norm SVR and Sparse Coding Algorithms for Linear Regression
    Zhang, Qingtian
    Hu, Xiaolin
    Zhang, Bo
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2015, 26 (08) : 1828 - 1833
  • [8] Direction Finding with L1-norm Subspaces
    Markopoulos, P. P.
    Tsagkarakis, N.
    Pados, D. A.
    Karystinos, G. N.
    [J]. COMPRESSIVE SENSING III, 2014, 9109
  • [9] Bayesian L1-norm sparse learning
    Lin, Yuanqing
    Lee, Daniel D.
    [J]. 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 5463 - 5466
  • [10] Linearized alternating directions method for l1-norm inequality constrained l1-norm minimization
    Cao, Shuhan
    Xiao, Yunhai
    Zhu, Hong
    [J]. APPLIED NUMERICAL MATHEMATICS, 2014, 85 : 142 - 153