Progression -free survival prediction of multiple myeloma patients in five European countries using machine learning models

被引:0
|
作者
Witte, M. L. Pleguezuelo [1 ]
Muller, M. [2 ]
Hartmann, J. [2 ]
Ricarte, C. [3 ]
Moehler, T. [4 ]
Lopez, M. [5 ]
Jindal, K. [1 ]
机构
[1] IQVIA, Global Oncol, London, England
[2] IQVIA, Adv Analyt, Frankfurt, Germany
[3] IQVIA, Global Oncol, Courbevoie, France
[4] IQVIA, TSSU Med Sci, Neu Isenburg, Germany
[5] IQVIA, Global Oncol, Madrid, Spain
关键词
D O I
10.1016/j.annonc.2023.09.707
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
844P
引用
收藏
页码:S550 / S550
页数:1
相关论文
共 50 条
  • [41] Impact of interferon maintenance therapy on multiple myeloma patients' quality of life, progression-free survival and overall survival
    Bumeder, I
    Tyroller, M.
    Fischer, N.
    Busch, R.
    Frick, E.
    [J]. PSYCHO-ONCOLOGY, 2006, 15 (02) : S187 - S188
  • [42] Using serum metabolomic signatures to classify multiple sclerosis progression using machine learning models
    Oppong, A. E.
    Coelewij, L.
    Waddington, K. E.
    Martin-Gutierrez, L.
    Farrell, R.
    Pineda-Torra, I.
    Jury, E. C.
    [J]. MULTIPLE SCLEROSIS JOURNAL, 2022, 28 (3_SUPPL) : 316 - 316
  • [43] Levels of Uninvolved Immunoglobulin Predict Clinical Status and Progression-Free Survival for Multiple Myeloma Patients
    Harutyunyan, Nika M.
    Vardanyan, Suzie
    Ghermezi, Michael
    Gottlieb, Jillian
    Berenson, Ariana
    Andreu-Vieyra, Claudia
    Tang, George
    Sanchez, Eric
    Li, Mingjie
    Wang, Cathy
    Ben-Zvi, Joseph
    Garzio, Gigi
    Chen, Haiming
    Finlay, Judith
    Berenson, James R.
    [J]. BLOOD, 2014, 124 (21)
  • [44] Carfilzomib significantly improves the progression-free survival of high-risk patients in multiple myeloma
    Avet-Loiseau, Herve
    Fonseca, Rafael
    Siegel, David
    Dimopoulos, Meletios A.
    Spicka, Ivan
    Masszi, Tamas
    Hajek, Roman
    Rosinol, Laura
    Goranova-Marinova, Vesselina
    Mihaylov, Georgi
    Maisnar, Vladimir
    Mateos, Maria-Victoria
    Wang, Michael
    Niesvizky, Ruben
    Oriol, Albert
    Jakubowiak, Andrzej
    Minarik, Jiri
    Palumbo, Antonio
    Bensinger, William
    Kukreti, Vishal
    Ben-Yehuda, Dina
    Stewart, A. Keith
    Obreja, Mihaela
    Moreau, Philippe
    [J]. BLOOD, 2016, 128 (09) : 1174 - 1180
  • [45] Association of Socioeconomic Status with Adherence, Progression Free and Overall Survival to Oral Agents in Multiple Myeloma Patients
    Rutter, W. Cliff
    Avalos-Reyes, Elisea
    Cavers, Will
    Prakash, Shivaani
    Johnson, Kjel
    Bernal-Mizrachi, Leon
    [J]. BLOOD, 2022, 140 : 10065 - 10067
  • [46] Levels of uninvolved immunoglobulins predict clinical status and progression-free survival for multiple myeloma patients
    Harutyunyan, Nika M.
    Vardanyan, Suzie
    Ghermezi, Michael
    Gottlieb, Jillian
    Berenson, Ariana
    Andreu-Vieyra, Claudia
    Berenson, James R.
    [J]. BRITISH JOURNAL OF HAEMATOLOGY, 2016, 174 (01) : 81 - 87
  • [47] Survival prediction of glioblastoma patients using modern deep learning and machine learning techniques
    Rikan, Samin Babaei
    Azar, Amir Sorayaie
    Naemi, Amin
    Mohasefi, Jamshid Bagherzadeh
    Pirnejad, Habibollah
    Wiil, Uffe Kock
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01)
  • [48] Survival prediction of glioblastoma patients using modern deep learning and machine learning techniques
    Samin Babaei Rikan
    Amir Sorayaie Azar
    Amin Naemi
    Jamshid Bagherzadeh Mohasefi
    Habibollah Pirnejad
    Uffe Kock Wiil
    [J]. Scientific Reports, 14
  • [49] A Machine Learning Model to Predict Survival and Therapeutic Responses in Multiple Myeloma
    Ren, Liang
    Xu, Bei
    Xu, Jiadai
    Li, Jing
    Jiang, Jifeng
    Ren, Yuhong
    Liu, Peng
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (07)
  • [50] Overall and Disease-Free Survival Prediction of Postoperative Breast Cancer Patients using Machine Learning Techniques
    Shouket, Tahreem
    Mahmood, Sajid
    Hassan, Malik Tahir
    Iftikhar, Afnan
    [J]. 2019 22ND IEEE INTERNATIONAL MULTI TOPIC CONFERENCE (INMIC), 2019, : 238 - 243