DUNet: Dense U-blocks network for fine-grained crack detection

被引:3
|
作者
Sheng, Shibo [1 ]
Yin, Hui [1 ]
Yang, Ying [2 ]
Chong, Aixin [2 ]
Huang, Hua [1 ]
机构
[1] Beijing Jiaotong Univ, Beijing Key Lab Traff Data Anal & Min, Beijing 100044, Peoples R China
[2] Beijing Jiaotong Univ, Key Lab Beijing Railway Engn, Beijing 100044, Peoples R China
关键词
Fine-grained crack detection; Generalization; Convolutional neural network; Constant resolution U-block group; Dense feature connection strategy;
D O I
10.1007/s11760-023-02905-4
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
At present, many progress has been made in crack detection methods based on deep neural networks. Compared to general cracks, fine-grained cracks are more difficult to detect not only due to their small and narrow shape, but also the various types of cluttered scenes. It is time-consuming to collect and label the samples of fine-grained cracks that makes most current data-driven models fail for poor generalization. To tackle these problems, a novel dense U-blocks network (DUNet) is proposed for fine-grained crack detection in this paper. Specifically, in order to preserve the integrity of accurate position information of the fine-grained cracks, a constant resolution U-block group (CRUG) is designed. Further, a dense feature connection strategy (DFCS) is proposed to enhance the information flow for better reuse of multi-scale features. DUNet achieves state-of-the-art performance on four fine-grained crack datasets, together on three general crack datasets with different environments. Moreover, we propose a lightweight version (DUNet-L) of DUNet for real-time practical applications with good accuracy and less parameters and computation.
引用
收藏
页码:1929 / 1938
页数:10
相关论文
共 50 条
  • [41] FiFoNet: Fine-Grained Target Focusing Network for Object Detection in UAV Images
    Xi, Yue
    Jia, Wenjing
    Miao, Qiguang
    Liu, Xiangzeng
    Fan, Xiaochen
    Li, Hanhui
    REMOTE SENSING, 2022, 14 (16)
  • [42] A Fine-grained Parameter Configuration Model for Failure Detection in Overlay Network Systems
    Cao, Jijun
    Su, Jinshu
    Wang, Yongjun
    Sun, Zhigang
    2008 INTERNATIONAL CONFERENCE ON MULTIMEDIA AND INFORMATION TECHNOLOGY, PROCEEDINGS, 2008, : 580 - 585
  • [43] A Unified Hierarchical Convolutional Neural Network for Fine-grained Traffic Sign Detection
    Huang, Hairu
    Yang, Ming
    Wang, Chunxiang
    Wang, Bing
    2018 CHINESE AUTOMATION CONGRESS (CAC), 2018, : 2733 - 2738
  • [44] Representation Learning for Fine-Grained Change Detection
    O'Mahony, Niall
    Campbell, Sean
    Krpalkova, Lenka
    Carvalho, Anderson
    Walsh, Joseph
    Riordan, Daniel
    SENSORS, 2021, 21 (13)
  • [45] FgDetector: Fine-grained Android Malware Detection
    Li, Dongfang
    Wang, Zhaoguo
    Li, Lixin
    Wang, Zhihua
    Wang, Yucheng
    Xue, Yibo
    2017 IEEE SECOND INTERNATIONAL CONFERENCE ON DATA SCIENCE IN CYBERSPACE (DSC), 2017, : 311 - 318
  • [46] Fine-grained Evaluation on Face Detection in the Wild
    Yang, Bin
    Yan, Junjie
    Lei, Zhen
    Li, Stan Z.
    2015 11TH IEEE INTERNATIONAL CONFERENCE AND WORKSHOPS ON AUTOMATIC FACE AND GESTURE RECOGNITION (FG), VOL. 1, 2015,
  • [47] Fine-grained Topic Detection and Tracking on Twitter
    Mamo, Nicholas
    Azzopardi, Joel
    Layfield, Colin
    PROCEEDINGS OF THE 13TH INTERNATIONAL JOINT CONFERENCE ON KNOWLEDGE DISCOVERY, KNOWLEDGE ENGINEERING AND KNOWLEDGE MANAGEMENT (KDIR), VOL 1:, 2021, : 79 - 86
  • [48] Fine-Grained Accident Detection: Database and Algorithm
    Yu, Hongyang
    Zhang, Xinfeng
    Wang, Yaowei
    Huang, Qingming
    Yin, Baocai
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 1059 - 1069
  • [49] CANCEREMO : A Dataset for Fine-Grained Emotion Detection
    Sosea, Tiberiu
    Caragea, Cornelia
    PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), 2020, : 8892 - 8904
  • [50] Fine-grained Conflict Detection of IoT Services
    Chaki, Dipankar
    Bouguettaya, Athman
    2020 IEEE 13TH INTERNATIONAL CONFERENCE ON SERVICES COMPUTING (SCC 2020), 2020, : 321 - 328