A fast time domain solver for the equilibrium Dyson equation

被引:9
|
作者
Kaye, Jason [1 ,2 ]
Strand, Hugo U. R. [3 ]
机构
[1] Flatiron Inst, Ctr Computat Math, New York, NY 10010 USA
[2] Flatiron Inst, Ctr Computat Quantum Phys, New York, NY 10010 USA
[3] Orebro Univ, Sch Sci & Technol, Fak Gatan 1, SE-70182 Orebro, Sweden
关键词
Nonlinear Volterra integral equations; Fast algorithms; Equilibrium Dyson equation; Many-body Green's function methods; 81-10; NONREFLECTING BOUNDARY-CONDITIONS; MEAN-FIELD THEORY; SCHRODINGER-EQUATION; CONVOLUTION; SYSTEMS;
D O I
10.1007/s10444-023-10067-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the numerical solution of the real-time equilibrium Dyson equation, which is used in calculations of the dynamical properties of quantum many-body systems. We show that this equation can be written as a system of coupled, nonlinear, convolutional Volterra integro-differential equations, for which the kernel depends self-consistently on the solution. As is typical in the numerical solution of Volterra-type equations, the computational bottleneck is the quadratic-scaling cost of history integration. However, the structure of the nonlinear Volterra integral operator precludes the use of standard fast algorithms. We propose a quasilinear-scaling FFT-based algorithm which respects the structure of the nonlinear integral operator. The resulting method can reach large propagation times and is thus well-suited to explore quantum many-body phenomena at low energy scales. We demonstrate the solver with two standard model systems: the Bethe graph and the Sachdev-Ye-Kitaev model.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] A FAST-FORWARD SOLVER OF RADIATIVE TRANSFER EQUATION
    Gao, Hao
    Zhao, Hongkai
    TRANSPORT THEORY AND STATISTICAL PHYSICS, 2009, 38 (03): : 149 - 192
  • [32] Fast Parallel Solver for the Space-time IgA-DG Discretization of the Diffusion Equation
    Pietro Benedusi
    Paola Ferrari
    Carlo Garoni
    Rolf Krause
    Stefano Serra-Capizzano
    Journal of Scientific Computing, 2021, 89
  • [33] Fast Parallel Solver for the Space-time IgA-DG Discretization of the Diffusion Equation
    Benedusi, Pietro
    Ferrari, Paola
    Garoni, Carlo
    Krause, Rolf
    Serra-Capizzano, Stefano
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 89 (01)
  • [34] Time-Domain Integral Equation Solver Using Variable-Order Temporal Interpolators
    Ghaffari-Miab, M.
    Valdes, F.
    Faraji-Dana, R.
    Michielssen, E.
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2014, 29 (02): : 116 - 123
  • [35] Porting an Explicit Time-Domain Volume-Integral-Equation Solver on GPUs with OpenACC
    Feki, Saber
    Al-Jarro, Ahmed
    Clo, Alain
    Bagci, Hakan
    IEEE ANTENNAS AND PROPAGATION MAGAZINE, 2014, 56 (02) : 265 - 277
  • [36] A DOMAIN-DECOMPOSED FAST POISSON SOLVER ON A RECTANGLE
    CHAN, TF
    RESASCO, DC
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1987, 8 (01): : S14 - S26
  • [37] Time-domain integral-equation-based solver for transient and broadband problems in electromagnetics
    Boryssenko, AO
    Schaubert, DH
    ULTRA-WIDEBAND, SHORT-PULSE ELECTROMAGNETICS 6, 2003, : 239 - 249
  • [38] Fast domain decomposition high order Poisson solver
    Gustafsson B.
    Hemmingsson-Frändén L.
    Journal of Scientific Computing, 1999, 14 (3) : 223 - 243
  • [39] Fast Multipole Time Domain Algorithm for the Scalar and Vector Wave Equation
    Shi, Yifei
    2019 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION AND USNC-URSI RADIO SCIENCE MEETING, 2019, : 183 - 184
  • [40] A Fast-Multipole Domain Decomposition Integral Equation Solver for Characterizing Electromagnetic Wave Propagation in Mine Environments
    Yuecel, Abdulkadir C.
    Liu, Yang
    Bagci, Hakan
    Michielssen, Eric
    2013 USNC-URSI RADIO SCIENCE MEETING (JOINT WITH AP-S SYMPOSIUM), 2013, : 73 - 73