A Dominant-Negative Mutant of ANXA7 Impairs Calcium Signaling and Enhances the Proliferation of Prostate Cancer Cells by Downregulating the IP3 Receptor and the PI3K/mTOR Pathway

被引:3
|
作者
Srivastava, Meera [1 ]
Bera, Alakesh [1 ]
Eidelman, Ofer [1 ]
Tran, Minh B. [1 ]
Jozwik, Catherine [1 ]
Glasman, Mirta [1 ]
Leighton, Ximena [1 ]
Caohuy, Hung [1 ]
Pollard, Harvey B. [1 ]
机构
[1] Uniformed Serv Univ Hlth Sci USUHS, Inst Mol Med, Dept Anat Physiol & Genet, Sch Med, Bethesda, MD 20814 USA
关键词
ANXA7; dominant-negative triple mutant (DNTM); IP3; mTOR; PI3K; SYNEXIN ANNEXIN-VII; PHOSPHOLIPASE-D ACTIVITY; TUMOR-SUPPRESSOR GENE; ENDOPLASMIC-RETICULUM; CHROMAFFIN CELLS; CA2+ CONCENTRATION; ANDROGEN RECEPTOR; PROTEIN SYNEXIN; A1; EXPRESSION; GROWTH;
D O I
10.3390/ijms24108818
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Annexin A7/ANXA7 is a calcium-dependent membrane fusion protein with tumor suppressor gene (TSG) properties, which is located on chromosome 10q21 and is thought to function in the regulation of calcium homeostasis and tumorigenesis. However, whether the molecular mechanisms for tumor suppression are also involved in the calcium- and phospholipid-binding properties of ANXA7 remain to be elucidated. We hypothesized that the 4 C-terminal endonexin-fold repeats in ANXA7 (GX(X)GT), which are contained within each of the 4 annexin repeats with 70 amino acids, are responsible for both calcium- and GTP-dependent membrane fusion and the tumor suppressor function. Here, we identified a dominant-negative triple mutant (DNTM/DN-ANXA7J) that dramatically suppressed the ability of ANXA7 to fuse with artificial membranes while also inhibiting tumor cell proliferation and sensitizing cells to cell death. We also found that the [DNTM]ANA7 mutation altered the membrane fusion rate and the ability to bind calcium and phospholipids. In addition, in prostate cancer cells, our data revealed that variations in phosphatidylserine exposure, membrane permeabilization, and cellular apoptosis were associated with differential IP3 receptor expression and PI3K/AKT/mTOR modulation. In conclusion, we discovered a triple mutant of ANXA7, associated with calcium and phospholipid binding, which leads to the loss of several essential functions of ANXA7 pertinent to tumor protection and highlights the importance of the calcium signaling and membrane fusion functions of ANXA7 for preventing tumorigenesis.
引用
收藏
页数:27
相关论文
共 50 条
  • [31] GPNMB silencing suppresses the proliferation and metastasis of osteosarcoma cells by blocking the PI3K/Akt/mTOR signaling pathway
    Jin, Rui
    Jin, Ying-Ying
    Tang, Yi-Lun
    Yang, Hua-Juan
    Zhou, Xiao-Qian
    Lei, Zhe
    ONCOLOGY REPORTS, 2018, 39 (06) : 3034 - 3040
  • [32] Centchroman inhibits proliferation of head and neck cancer cells through the modulation of PI3K/mTOR Pathway
    Srivastava, Vikas Kumar
    Gara, Rishi Kumar
    Bhatt, M. L. B.
    Sahu, D. P.
    Mishra, Durga Prasad
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2011, 404 (01) : 40 - 45
  • [33] miR-338 modulates proliferation and autophagy by PI3K/AKT/mTOR signaling pathway in cervical cancer
    Lu, Rong
    Yang, Zhanhua
    Xu, Guoying
    Yu, Shengsheng
    BIOMEDICINE & PHARMACOTHERAPY, 2018, 105 : 633 - 644
  • [34] Pseudouridylate Synthase 7 Promotes Cell Proliferation and Invasion in Colon Cancer Through Activating PI3K/AKT/mTOR Signaling Pathway
    Du, Jiming
    Gong, Aimin
    Zhao, Xuefeng
    Wang, Guixin
    DIGESTIVE DISEASES AND SCIENCES, 2022, 67 (04) : 1260 - 1270
  • [35] Elevated estrogen receptor β expression in triple negative breast cancer cells is associated with sensitivity to doxorubicin by inhibiting the PI3K/AKT/mTOR signaling pathway
    Lei, Shanshan
    Fan, Peizhi
    Wang, Mengchuan
    Zhang, Chaojie
    Jiang, Yu
    Huang, Shulin
    Fang, Meng
    He, Zili
    Wu, Aiguo
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2020, 20 (02) : 1630 - 1636
  • [36] Ursolic Acid Induces Apoptosis of Prostate Cancer Cells via the PI3K/Akt/mTOR Pathway
    Meng, Yan
    Lin, Zhao-Min
    Ge, Nan
    Zhang, Deng-Lu
    Huang, Jie
    Kong, Feng
    AMERICAN JOURNAL OF CHINESE MEDICINE, 2015, 43 (07): : 1471 - 1486
  • [37] Effect of STK3 on proliferation and apoptosis of pancreatic cancer cells via PI3K/AKT/mTOR pathway
    Chen, Jun
    Liu, Fuqiang
    Wu, Jiao
    Yang, Yichun
    He, Jin
    Wu, Fan
    Yang, Kun
    Li, Junfeng
    Jiang, Zhongxiang
    Jiang, Zheng
    CELLULAR SIGNALLING, 2023, 106
  • [38] Pseudouridylate Synthase 7 Promotes Cell Proliferation and Invasion in Colon Cancer Through Activating PI3K/AKT/mTOR Signaling Pathway
    Jiming Du
    Aimin Gong
    Xuefeng Zhao
    Guixin Wang
    Digestive Diseases and Sciences, 2022, 67 : 1260 - 1270
  • [39] Topiramate inhibits the proliferation of bladder cancer cells via PI3K/AKTR signaling pathway
    Chao, Liu
    Zhang, Shaoqi
    Zhang, Jianjun
    Cai, Longjun
    Wang, Xiangyu
    Meng, Fanlai
    Cai, Weiqi
    TROPICAL JOURNAL OF PHARMACEUTICAL RESEARCH, 2022, 21 (04) : 685 - 691
  • [40] KIFC3 Promotes Proliferation, Migration, and Invasion in Colorectal Cancer via PI3K/AKT/mTOR Signaling Pathway
    Liao, Huiling
    Zhang, Lan
    Lu, Shimin
    Li, Wei
    Dong, Weiguo
    FRONTIERS IN GENETICS, 2022, 13