Mineralogical and chemical characterization of mining waste and utilization for carbon sequestration through mineral carbonation

被引:5
|
作者
Molahid, Verma Loretta M. [1 ]
Kusin, Faradiella Mohd [1 ,2 ]
Hasan, Sharifah Nur Munirah Syed [1 ]
机构
[1] Univ Putra Malaysia, Fac Forestry & Environm, Dept Environm, UPM Serdang 43400, Selangor, Malaysia
[2] Univ Putra Malaysia, Inst Trop Forestry & Forest Prod INTROP, UPM Serdang 43400, Selangor, Malaysia
关键词
Mine waste; Mineral Carbonation; Carbon sequestration; Carbon capture and storage; Climate mitigation; Waste reutilization; CO2; SEQUESTRATION; ACCELERATED CARBONATION; DIOXIDE; CAPTURE; ROCKS; DISSOLUTION; REDUCTION; MAGNETITE; LIMESTONE; HEMATITE;
D O I
10.1007/s10653-023-01513-y
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Mining activities have often been associated with the issues of waste generation, while mining is considered a carbon-intensive industry that contributes to the increasing carbon dioxide emission to the atmosphere. This study attempts to evaluate the potential of reusing mining waste as feedstock material for carbon dioxide sequestration through mineral carbonation. Characterization of mining waste was performed for limestone, gold and iron mine waste, which includes physical, mineralogical, chemical and morphological analyses that determine its potential for carbon sequestration. The samples were characterized as having alkaline pH (7.1-8.3) and contain fine particles, which are important to facilitate precipitation of divalent cations. High amount of cations (CaO, MgO and Fe2O3) was found in limestone and iron mine waste, i.e., total of 79.55% and 71.31%, respectively, that are essential for carbonation process. Potential Ca/Mg/Fe silicates, oxides and carbonates have been identified, which was confirmed by the microstructure analysis. The limestone waste composed majorly of CaO (75.83%), which was mainly originated from calcite and akermanite minerals. The iron mine waste consisted of Fe2O3 (56.60%), mainly from magnetite and hematite, and CaO (10.74%) which was derived from anorthite, wollastonite and diopside. The gold mine waste was attributed to a lower cation content (total of 7.71%), associated mainly with mineral illite and chlorite-serpentine. The average capacity for carbon sequestration was between 7.73 and79.55%, which corresponds to 383.41 g, 94.85 g and 4.72 g CO2 that were potentially sequestered per kg of limestone, iron and gold mine waste, respectively. Therefore, it has been learned that the mine waste might be utilized as feedstock for mineral carbonation due to the availability of reactive silicate/oxide/carbonate minerals. Utilization of mine waste would be beneficial in light of waste restoration in most mining sites while tackling the issues of CO2 emission in mitigating the global climate change.
引用
收藏
页码:4439 / 4460
页数:22
相关论文
共 50 条
  • [31] Carbon dioxide storage through mineral carbonation
    Snaebjornsdottir, Sandra O.
    Sigfusson, Bergur
    Marieni, Chiara
    Goldberg, David
    Gislason, Sigurdur R.
    Oelkers, Eric H.
    NATURE REVIEWS EARTH & ENVIRONMENT, 2020, 1 (02) : 90 - 102
  • [32] A review of carbon dioxide sequestration by mineral carbonation of industrial byproduct gypsum
    Wang, Bo
    Pan, Zihe
    Cheng, Huaigang
    Zhang, Zhien
    Cheng, Fangqin
    JOURNAL OF CLEANER PRODUCTION, 2021, 302
  • [33] CO2 sequestration technology through mineral carbonation: An extraction and carbonation of blast slag
    Lee, Seonhye
    Kim, Ji-Whan
    Chae, Soochun
    Bang, Jun-Hwan
    Lee, Seung-Woo
    JOURNAL OF CO2 UTILIZATION, 2016, 16 : 336 - 345
  • [34] A review of carbon dioxide sequestration by mineral carbonation of industrial byproduct gypsum
    Wang, Bo
    Pan, Zihe
    Cheng, Huaigang
    Zhang, Zhien
    Cheng, Fangqin
    Journal of Cleaner Production, 2021, 302
  • [35] Behaviour of concrete and cement in carbon dioxide sequestration by mineral carbonation processes
    Aparicio, Patricia
    Martin, Domingo
    Baya-Arenas, Rocio
    Flores-Ales, Vicente
    BOLETIN DE LA SOCIEDAD ESPANOLA DE CERAMICA Y VIDRIO, 2022, 61 (03): : 220 - 228
  • [36] Carbon dioxide sequestration by aqueous mineral carbonation of magnesium silicate minerals
    Gerdemann, SJ
    Dahlin, DC
    O'Connor, WK
    GREENHOUSE GAS CONTROL TECHNOLOGIES, VOLS I AND II, PROCEEDINGS, 2003, : 677 - 682
  • [37] Carbon dioxide storage through mineral carbonation
    Sandra Ó. Snæbjörnsdóttir
    Bergur Sigfússon
    Chiara Marieni
    David Goldberg
    Sigurður R. Gislason
    Eric H. Oelkers
    Nature Reviews Earth & Environment, 2020, 1 : 90 - 102
  • [38] CO2 sequestration through mineral carbonation of iron oxyhydroxides
    Lammers, Kristin
    Strongin, Daniel R.
    Riendeau, Amber
    Murphy, Riley
    Smirnov, Alex
    Schoonen, Martin A. A.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 240
  • [39] Chemistry of aqueous mineral carbonation for carbon sequestration and explanation of experimental results
    Chen, Zhong-Ying
    O'Connor, William K.
    Gerdemann, S. J.
    ENVIRONMENTAL PROGRESS, 2006, 25 (02): : 161 - 166
  • [40] Chemical and Mineralogical Characterization of Montevive Celestine Mineral
    Ariza-Rodriguez, Noemi
    Rodriguez-Navarro, Alejandro B.
    Calero de Hoces, Monica
    Manuel Martin, Jose
    Munoz-Batista, Mario J.
    MINERALS, 2022, 12 (10)