Detailed numerical simulation of multi-scale interface-vortex interactions of liquid jet atomization in crossflow

被引:1
|
作者
Chai, Min [1 ,2 ]
Fu, Yueyao [1 ]
Zheng, Shuihua [1 ]
Hong, Zhiwei [1 ]
Shao, Changxiao [3 ]
Luo, Kun [2 ]
Fan, Jianren [2 ]
机构
[1] Zhejiang Univ Technol, Inst Proc Equipment & Control Engn, Coll Mech Engn, Hangzhou 310023, Peoples R China
[2] Zhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R China
[3] Harbin Inst Technol, Ctr Turbulence Control, Shenzhen 518055, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Jet atomization in crossflow; Multi-scale phase interface; Vortical structure; VOF; Adaptive mesh refinement; LARGE-EDDY SIMULATION; ADAPTIVE MESH REFINEMENT; PRIMARY BREAKUP; FRONT-TRACKING; DYNAMICS; VOLUME; LES;
D O I
10.1016/j.ijmultiphaseflow.2023.104390
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper, a detailed numerical simulation of liquid jet atomization in crossflow is performed based on the volume of fluid method coupled with the adaptive mesh refinement technique. The multi-scale phase interface evolution and the interface-vortex interaction are reported. It is found that the momentum flux ratio, Weber number, density ratio and viscosity ratio are key variables for the empirical correlation to accurately predict the atomization characteristics. Three breakup regimes, i.e., column bag breakup, surface breakup and ligament breakup, occur due to the great mass and momentum exchanges at the interface. Specially, the Kelvin-Helmholtz instability induces axial surface waves that eventually develop into column bag breakup while the Rayleigh -Taylor instability and surface thinning can induce surface breakup. Relatively, the column bag breakup gener-ates larger liquid structures, presenting a bimodal feature. The produced ligaments either shrink to droplets or further breakup into droplets depending on their size and shape, leading to a log-normal distribution of droplet size. The interface-vortex interaction is distinctive compared to single-phase flows. A vortex core is observed to simultaneously form, grow and dissipate within each bag during the life circle of the bag, and three types of counter-rotating vortex pair exist around the column root, bag membrane and liquid droplets. Vortical structures tend to concentrate near the interface with large deformations, possessing a strong perpendicularity between the phase interface and the vortex. This work offers fundamental basis for better understanding and organization of atomization.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] High fidelity simulation and analysis of liquid jet atomization in a gaseous crossflow at intermediate Weber numbers
    Li, Xiaoyi
    Soteriou, Marios C.
    [J]. PHYSICS OF FLUIDS, 2016, 28 (08)
  • [22] A mass conserving level set method for detailed numerical simulation of liquid atomization
    Luo, Kun
    Shao, Changxiao
    Yang, Yue
    Fan, Jianren
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 298 : 495 - 519
  • [23] Towards high-fidelity multi-scale simulation of spray atomization
    Zhou, L.
    Xia, J.
    Shinjo, J.
    Cairns, A.
    Cruff, L.
    Blaxill, H.
    [J]. 12TH INTERNATIONAL CONFERENCE ON COMBUSTION & ENERGY UTILISATION, 2015, 66 : 309 - 312
  • [24] Sensitivity analysis of a multi-scale biofuel primary atomization simulation tool
    Strasser, Wayne
    Jiang, Lulin
    [J]. INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2024, 159
  • [25] Detailed simulation of primary atomization mechanisms in Diesel jet sprays (isolated identification of liquid jet tip effects)
    Shinjo, J.
    Umemura, A.
    [J]. PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2011, 33 : 2089 - 2097
  • [26] Impact of electron-scale turbulence and multi-scale interactions in the JET tokamak
    Bonanomi, N.
    Mantica, P.
    Citrin, J.
    Goerler, T.
    Teaca, B.
    Abduallev, S.
    Abhangi, M.
    Abreu, P.
    Afzal, M.
    Aggarwal, K. M.
    Ahlgren, T.
    Ahn, J. H.
    Aho-Mantila, L.
    Aiba, N.
    Airila, M.
    Albanese, R.
    Aldred, V.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allinson, M.
    Alper, B.
    Alves, E.
    Ambrosino, G.
    Ambrosino, R.
    Amicucci, L.
    Amosov, V.
    Sunden, E. Andersson
    Angelone, M.
    Anghel, M.
    Angioni, C.
    Appel, L.
    Appelbee, C.
    Arena, P.
    Ariola, M.
    Arnichand, H.
    Arshad, S.
    Ash, A.
    Ashikawa, N.
    Aslanyan, V.
    Asunta, O.
    Auriemma, F.
    Austin, Y.
    Avotina, L.
    Axton, M. D.
    Ayres, C.
    Bacharis, M.
    Baciero, A.
    [J]. NUCLEAR FUSION, 2018, 58 (12)
  • [27] Numerical simulation and analysis of multi-scale cavitating flows
    Ghahramani, Ebrahim
    Strom, H.
    Bensow, R. E.
    [J]. JOURNAL OF FLUID MECHANICS, 2021, 922
  • [28] Multi-scale numerical simulation of structuresbased on Arlequin method
    Qiao, Hua
    Chen, Wei-Qiu
    [J]. Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2010, 44 (12): : 2314 - 2319
  • [29] Multi-Scale Modeling and Numerical Simulation for CVI Process
    Bai, Yun
    Yue, Xingye
    Zeng, Qingfeng
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2010, 7 (03) : 597 - 612
  • [30] Numerical simulation of multi-scale cavitating flow with special emphasis on the influence of vortex on micro-bubbles
    Zhou, Ming-zhe
    Wang, Zi-yang
    Bai, Xiao-rui
    Cheng, Huai-yu
    Ji, Bin
    [J]. JOURNAL OF HYDRODYNAMICS, 2023, 34 (6) : 1032 - 1043