Minimum Message Length Inference of the Weibull Distribution with Complete and Censored Data

被引:0
|
作者
Makalic, Enes [1 ]
Schmidt, Daniel F. [2 ]
机构
[1] Univ Melbourne, Melbourne Sch Populat & Global Hlth, Parkville, Vic 3010, Australia
[2] Monash Univ, Dept Data Sci & AI, Clayton, Vic 3800, Australia
关键词
Weibull distribution; parameter estimation; model selection; INFORMATION; PROFILE; BIAS;
D O I
10.1007/978-981-99-8388-9_24
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Weibull distribution, with shape parameter k > 0 and scale parameter lambda > 0, is one of the most popular parametric distributions in survival analysis. It is well established that the maximum likelihood estimate of the Weibull shape parameter is inadequate due to the associated large bias when the sample size is small or the proportion of censored data is large. This manuscript demonstrates how the Bayesian information-theoretic minimum message length principle, coupled with a suitable choice of weakly informative prior distributions, can be used to infer Weibull distribution parameters given either complete data or data with censoring. Empirical experiments show that the proposed minimum message length estimate of the shape parameter is superior to the maximum likelihood estimate and is competitive with other recently proposed modified maximum likelihood estimates in terms of Kullback-Leibler risk.
引用
收藏
页码:291 / 303
页数:13
相关论文
共 50 条
  • [31] Database Normalization as a By-product of Minimum Message Length Inference
    Dowe, David L.
    Zaidi, Nayyar Abbas
    AI 2010: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2010, 6464 : 82 - 91
  • [32] ON A NEW MODIFIED INVERSE WEIBULL DISTRIBUTION: STATISTICAL INFERENCE UNDER CENSORED SCHEMES
    Elbatal, I.
    Alghamdi, Safar M.
    Ahmad, Zubair
    Hussain, Zawar
    Elgarhy, Mohammed
    ADVANCES AND APPLICATIONS IN STATISTICS, 2022, 81 : 53 - 69
  • [33] Statistical Inference of Doubly Left-Censored Samples from Weibull Distribution
    Fusek, Michal
    Michalek, Jaroslav
    INTERNATIONAL CONFERENCE PDMU-2012: PROBLEMS OF DECISION MAKING UNDER UNCERTAINTIES, 2012, : 31 - 40
  • [34] Inference for Weibull distribution under adaptive Type-I progressive hybrid censored competing risks data
    Ashour, S. K.
    Nassar, M.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (10) : 4756 - 4773
  • [35] Inference for a simple step-stress model with progressively censored competing risks data from Weibull distribution
    Liu, Fen
    Shi, Yimin
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (14) : 7238 - 7255
  • [36] Minimum message length grouping of ordered data
    Fitzgibbon, LJ
    Allison, L
    Dowe, DL
    ALGORITHMIC LEARNING THEORY, PROCEEDINGS, 2000, 1968 : 56 - 70
  • [37] On hybrid censored Weibull distribution
    Kundu, Debasis
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2007, 137 (07) : 2127 - 2142
  • [38] STATISTICAL INFERENCE FROM CENSORED WEIBULL SAMPLES
    BILLMANN, BR
    BAIN, LJ
    ANTLE, CE
    TECHNOMETRICS, 1972, 14 (04) : 831 - &
  • [39] A Simulation of Data Censored Rigth Type I with Weibull Distribution
    Gaspar, Daniel
    Ferreira, Luis Andrande
    2022 6TH INTERNATIONAL CONFERENCE ON SYSTEM RELIABILITY AND SAFETY, ICSRS, 2022, : 505 - 511
  • [40] Inference on the mean parameter of a two-parameter exponential distribution : Complete, censored and record data
    Malekzadeh, A.
    Jafari, A. A.
    Mahmoudi, S. M.
    JOURNAL OF STATISTICS & MANAGEMENT SYSTEMS, 2021, 24 (06): : 1233 - 1252