Block-diagonal test for high-dimensional covariance matrices

被引:1
|
作者
Lai, Jiayu [1 ,2 ]
Wang, Xiaoyi [3 ]
Zhao, Kaige [1 ,2 ]
Zheng, Shurong [1 ,2 ]
机构
[1] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
[2] Northeast Normal Univ, KLAS, Changchun 130024, Peoples R China
[3] Beijing Normal Univ, Ctr Stat & Data Sci, Zhuhai 519087, Peoples R China
关键词
Block-diagonal structure; High-dimensional covariance matrix; U-statistic; LIKELIHOOD RATIO TESTS; INDEPENDENCE; SETS;
D O I
10.1007/s11749-022-00842-x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The structure testing of a high-dimensional covariance matrix plays an important role in financial stock analyses, genetic series analyses, and many other fields. Testing that the covariance matrix is block-diagonal under the high-dimensional setting is the main focus of this paper. Several test procedures that rely on normality assumptions, two-diagonal block assumptions, or sub-block dimensionality assumptions have been proposed to tackle this problem. To relax these assumptions, we develop a test framework based on U-statistics, and the asymptotic distributions of the U-statistics are established under the null and local alternative hypotheses. Moreover, a test approach is developed for alternatives with different sparsity levels. Finally, both a simulation study and real data analysis demonstrate the performance of our proposed methods.
引用
收藏
页码:447 / 466
页数:20
相关论文
共 50 条
  • [21] Empirical likelihood test for the equality of several high-dimensional covariance matrices
    Liao, Guili
    Peng, Liang
    Zhang, Rongmao
    SCIENCE CHINA-MATHEMATICS, 2021, 64 (12) : 2775 - 2792
  • [22] Fisher's Combined Probability Test for High-Dimensional Covariance Matrices
    Yu, Xiufan
    Li, Danning
    Xue, Lingzhou
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (545) : 511 - 524
  • [23] Empirical likelihood test for the equality of several high-dimensional covariance matrices
    Guili Liao
    Liang Peng
    Rongmao Zhang
    Science China Mathematics, 2021, 64 : 2775 - 2792
  • [24] A note on tests for high-dimensional covariance matrices
    Mao, Guangyu
    STATISTICS & PROBABILITY LETTERS, 2016, 117 : 89 - 92
  • [25] High-dimensional testing for proportional covariance matrices
    Tsukuda, Koji
    Matsuura, Shun
    JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 171 : 412 - 420
  • [26] Permuting sparse rectangular matrices into block-diagonal form
    Aykanat, C
    Pinar, A
    Çatalyürek, ÜV
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 25 (06): : 1860 - 1879
  • [27] TESTING HOMOGENEITY OF HIGH-DIMENSIONAL COVARIANCE MATRICES
    Zheng, Shurong
    Lin, Ruitao
    Guo, Jianhua
    Yin, Guosheng
    STATISTICA SINICA, 2020, 30 (01) : 35 - 53
  • [28] Projected tests for high-dimensional covariance matrices
    Wu, Tung-Lung
    Li, Ping
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2020, 207 : 73 - 85
  • [29] Hypothesis testing for high-dimensional covariance matrices
    Li, Weiming
    Qin, Yingli
    JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 128 : 108 - 119
  • [30] Discriminative block-diagonal covariance descriptors for image set classification
    Ren, Jieyi
    Wu, Xiao-jun
    Kittler, Josef
    PATTERN RECOGNITION LETTERS, 2020, 136 : 230 - 236