Pattern Augmented Lightweight Convolutional Neural Network for Intrusion Detection System

被引:0
|
作者
Tadesse, Yonatan Embiza [1 ]
Choi, Young-June [1 ]
机构
[1] Ajou Univ, Dept Artificial Intelligence, Suwon 16499, South Korea
基金
新加坡国家研究基金会;
关键词
anomaly detection; convolutional neural networks; deep learning; DDoS; DoS; image dataset; intrusion detection system; lightweight model; machine learning; pattern augmented; spectrogram; DEEP LEARNING APPROACH; ANOMALY DETECTION;
D O I
10.3390/electronics13050932
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As the world increasingly becomes more interconnected, the demand for safety and security is ever-increasing, particularly for industrial networks. This has prompted numerous researchers to investigate different methodologies and techniques suitable for intrusion detection systems (IDS) requirements. Over the years, many studies have proposed various solutions in this regard, including signature-based and machine learning (ML)-based systems. More recently, researchers are considering deep learning (DL)-based anomaly detection approaches. Most proposed works in this research field aim to achieve either one or a combination of high accuracy, considerably low false alarm rates (FARs), high classification specificity and detection sensitivity, lightweight DL models, or other ML and DL-related performance measurement metrics. In this study, we propose a novel method to convert a raw dataset to an image dataset to magnify patterns by utilizing the Short-Term Fourier transform (STFT). The resulting high-quality image dataset allowed us to devise an anomaly detection system for IDS using a simple lightweight convolutional neural network (CNN) that classifies denial of service and distributed denial of service. The proposed methods were evaluated using a modern dataset, CSE-CIC-IDS2018, and a legacy dataset, NSLKDD. We have also applied a combined dataset to assess the generalization of the proposed model across various datasets. Our experimental results have demonstrated that the proposed methods achieved high accuracy and considerably low FARs with high specificity and sensitivity. The resulting loss and accuracy curves have demonstrated the efficacy of our raw dataset to image dataset conversion methodology, which is evident as an excellent generalization of the proposed lightweight CNN model was observed, effectively avoiding overfitting. This holds for both the modern and legacy datasets, including their mixed versions.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] A network intrusion detection system based on convolutional neural network
    Wang, Hui
    Cao, Zijian
    Hong, Bo
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 38 (06) : 7623 - 7637
  • [2] An Intrusion Detection System Based on Convolutional Neural Network
    Liu, Pengju
    [J]. PROCEEDINGS OF 2019 11TH INTERNATIONAL CONFERENCE ON COMPUTER AND AUTOMATION ENGINEERING (ICCAE 2019), 2019, : 62 - 67
  • [3] A New Intrusion Detection System Based on Convolutional Neural Network
    El Kamali, Anas
    Chougdali, Khalid
    Abdellatif, Kobbane
    [J]. ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 2994 - 2999
  • [4] Intrusion Detection System Using Hybrid Convolutional Neural Network
    Samha, Amani K.
    Malik, Nidhi
    Sharma, Deepak
    Kavitha, S.
    Dutta, Papiya
    [J]. MOBILE NETWORKS & APPLICATIONS, 2023,
  • [5] An Intrusion Detection System Based on Convolutional Neural Network for Imbalanced Network Traffic
    Zhang, Xiaoxuan
    Ran, Jing
    Mi, Jize
    [J]. PROCEEDINGS OF 2019 IEEE 7TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT 2019), 2019, : 456 - 460
  • [6] Applying Convolutional Neural Network for Network Intrusion Detection
    Vinayakumar, R.
    Soman, K. P.
    Poornachandran, Prabaharan
    [J]. 2017 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2017, : 1222 - 1228
  • [7] Internet of Things Intrusion Detection System Based on Convolutional Neural Network
    Yin, Jie
    Shi, Yuxuan
    Deng, Wen
    Yin, Chang
    Wang, Tiannan
    Song, Yuchen
    Li, Tianyao
    Li, Yicheng
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 75 (01): : 2119 - 2135
  • [8] A Robust DDoS Intrusion Detection System Using Convolutional Neural Network
    Najar, Ashfaq Ahmad
    Naik, S. Manohar
    [J]. COMPUTERS & ELECTRICAL ENGINEERING, 2024, 117
  • [9] An Internet of Vehicles intrusion detection system based on a convolutional neural network
    Peng, Ruxiang
    Li, Weishi
    Yang, Tao
    Kong, Huafeng
    [J]. 2019 IEEE INTL CONF ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, BIG DATA & CLOUD COMPUTING, SUSTAINABLE COMPUTING & COMMUNICATIONS, SOCIAL COMPUTING & NETWORKING (ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM 2019), 2019, : 1595 - 1599
  • [10] A Lightweight Intrusion Detection System Using Convolutional Neural Network and Long Short-Term Memory in Fog Computing
    Alzahrani, Hawazen
    Sheltami, Tarek
    Barnawi, Abdulaziz
    Imam, Muhammad
    Yaser, Ansar
    [J]. Computers, Materials and Continua, 2024, 80 (03): : 4703 - 4728