A Lightweight Intrusion Detection System Using Convolutional Neural Network and Long Short-Term Memory in Fog Computing

被引:2
|
作者
Alzahrani, Hawazen [1 ]
Sheltami, Tarek [1 ]
Barnawi, Abdulaziz [2 ]
Imam, Muhammad [2 ]
Yaser, Ansar [3 ]
机构
[1] King Fahd Univ Petr & Minerals, Interdisciplinary Res Ctr Smart Mobil & Logist, Comp Engn Dept, Dhahran 31261, Saudi Arabia
[2] King Fahd Univ Petr & Minerals, Interdisciplinary Res Ctr Intelligent Secure Syst, Comp Engn Dept, Dhahran 31261, Saudi Arabia
[3] Hasselt Univ, Transportat Res Inst IMOB, B-3500 Hasselt, Belgium
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2024年 / 80卷 / 03期
关键词
Intrusion detection; fog computing; CNN; LSTM; energy consumption; INTERNET; THINGS; SECURITY; ATTACK; MECHANISM;
D O I
10.32604/cmc.2024.054203
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Internet of Things (IoT) links various devices to digital services and significantly improves the quality of our lives. However, as IoT connectivity is growing rapidly, so do the risks of network vulnerabilities and threats. Many interesting Intrusion Detection Systems (IDSs) are presented based on machine learning (ML) techniques to overcome this problem. Given the resource limitations of fog computing environments, a lightweight IDS is essential. This paper introduces a hybrid deep learning (DL) method that combines convolutional neural networks (CNN) and long short-term memory (LSTM) to build an energy-aware, anomaly-based IDS. We test this system on a recent dataset, focusing on reducing overhead while maintaining high accuracy and a low false alarm rate. We compare CICIoT2023, KDD-99 and NSL-KDD datasets to evaluate the performance of the proposed IDS model based on key metrics, including latency, energy consumption, false alarm rate and detection rate metrics. Our findings show an accuracy rate over 92% and a false alarm rate below 0.38%. These results demonstrate that our system provides strong security without excessive resource use. The practicality of deploying IDS with limited resources is demonstrated by the successful implementation of IDS functionality on a Raspberry Pi acting as a Fog node. The proposed lightweight model, with a maximum power consumption of 6.12 W, demonstrates its potential to operate effectively on energy-limited devices such as low-power fog nodes or edge devices. We prioritize energy efficiency while maintaining high accuracy, distinguishing our scheme from existing approaches. Extensive experiments demonstrate a significant reduction in false positives, ensuring accurate identification of genuine security threats while minimizing unnecessary alerts.
引用
收藏
页码:4703 / 4728
页数:26
相关论文
共 50 条
  • [1] Hybrid Deep Learning Network Intrusion Detection System Based on Convolutional Neural Network and Bidirectional Long Short-Term Memory
    Jihado, Anindra Ageng
    Girsang, Abba Suganda
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2024, 15 (02) : 219 - 232
  • [2] Towards intrusion detection in fog environments using generative adversarial network and long short-term memory network
    Qu, Aiyan
    Shen, Qiuhui
    Ahmadi, Gholamreza
    COMPUTERS & SECURITY, 2024, 145
  • [3] Applying Long Short-Term Memory Recurrent Neural Network for Intrusion Detection
    Althubiti, Sara
    Nick, William
    Mason, Janelle
    Yuan, Xiaohong
    Esterline, Albert
    IEEE SOUTHEASTCON 2018, 2018,
  • [4] Driver drowsiness detection using hybrid convolutional neural network and long short-term memory
    Guo, Jing-Ming
    Markoni, Herleeyandi
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (20) : 29059 - 29087
  • [5] Driver drowsiness detection using hybrid convolutional neural network and long short-term memory
    Jing-Ming Guo
    Herleeyandi Markoni
    Multimedia Tools and Applications, 2019, 78 : 29059 - 29087
  • [6] Elephant Flows Detection Using Deep Neural Network, Convolutional Neural Network, Long Short-Term Memory, and Autoencoder
    Geremew, Getahun Wassie
    Ding, Jianguo
    JOURNAL OF COMPUTER NETWORKS AND COMMUNICATIONS, 2023, 2023
  • [7] A Driver Fatigue Detection Framework with Convolutional Neural Network and Long Short-Term Memory Network
    Bao, Ruyi
    Hameed, Nazia
    Walker, Adam
    APPLIED INTELLIGENCE AND INFORMATICS, AII 2023, 2024, 2065 : 283 - 297
  • [8] Deep Learning with Convolutional Neural Network and Long Short-Term Memory for Phishing Detection
    Adebowale, M. A.
    Lwin, K. T.
    Hossain, M. A.
    2019 13TH INTERNATIONAL CONFERENCE ON SOFTWARE, KNOWLEDGE, INFORMATION MANAGEMENT AND APPLICATIONS (SKIMA), 2019,
  • [9] Emotion detection using convolutional neural network and long short-term memory: a deep multimodal framework
    Tahir, Madiha
    Halim, Zahid
    Waqas, Muhammad
    Sukhia, Komal Nain
    Tu, Shanshan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (18) : 53497 - 53530
  • [10] Emotion detection using convolutional neural network and long short-term memory: a deep multimodal framework
    Madiha Tahir
    Zahid Halim
    Muhammad Waqas
    Komal Nain Sukhia
    Shanshan Tu
    Multimedia Tools and Applications, 2024, 83 : 53497 - 53530