A Lightweight Intrusion Detection System Using Convolutional Neural Network and Long Short-Term Memory in Fog Computing

被引:2
|
作者
Alzahrani, Hawazen [1 ]
Sheltami, Tarek [1 ]
Barnawi, Abdulaziz [2 ]
Imam, Muhammad [2 ]
Yaser, Ansar [3 ]
机构
[1] King Fahd Univ Petr & Minerals, Interdisciplinary Res Ctr Smart Mobil & Logist, Comp Engn Dept, Dhahran 31261, Saudi Arabia
[2] King Fahd Univ Petr & Minerals, Interdisciplinary Res Ctr Intelligent Secure Syst, Comp Engn Dept, Dhahran 31261, Saudi Arabia
[3] Hasselt Univ, Transportat Res Inst IMOB, B-3500 Hasselt, Belgium
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2024年 / 80卷 / 03期
关键词
Intrusion detection; fog computing; CNN; LSTM; energy consumption; INTERNET; THINGS; SECURITY; ATTACK; MECHANISM;
D O I
10.32604/cmc.2024.054203
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Internet of Things (IoT) links various devices to digital services and significantly improves the quality of our lives. However, as IoT connectivity is growing rapidly, so do the risks of network vulnerabilities and threats. Many interesting Intrusion Detection Systems (IDSs) are presented based on machine learning (ML) techniques to overcome this problem. Given the resource limitations of fog computing environments, a lightweight IDS is essential. This paper introduces a hybrid deep learning (DL) method that combines convolutional neural networks (CNN) and long short-term memory (LSTM) to build an energy-aware, anomaly-based IDS. We test this system on a recent dataset, focusing on reducing overhead while maintaining high accuracy and a low false alarm rate. We compare CICIoT2023, KDD-99 and NSL-KDD datasets to evaluate the performance of the proposed IDS model based on key metrics, including latency, energy consumption, false alarm rate and detection rate metrics. Our findings show an accuracy rate over 92% and a false alarm rate below 0.38%. These results demonstrate that our system provides strong security without excessive resource use. The practicality of deploying IDS with limited resources is demonstrated by the successful implementation of IDS functionality on a Raspberry Pi acting as a Fog node. The proposed lightweight model, with a maximum power consumption of 6.12 W, demonstrates its potential to operate effectively on energy-limited devices such as low-power fog nodes or edge devices. We prioritize energy efficiency while maintaining high accuracy, distinguishing our scheme from existing approaches. Extensive experiments demonstrate a significant reduction in false positives, ensuring accurate identification of genuine security threats while minimizing unnecessary alerts.
引用
收藏
页码:4703 / 4728
页数:26
相关论文
共 50 条
  • [21] Long Short Term Memory Recurrent Neural Network Classifier for Intrusion Detection
    Kim, Jihyun
    Kim, Jaehyun
    Huong Le Thi Thu
    Kim, Howon
    2016 INTERNATIONAL CONFERENCE ON PLATFORM TECHNOLOGY AND SERVICE (PLATCON), 2016,
  • [22] Forecasting nonadiabatic dynamics using hybrid convolutional neural network/long short-term memory network
    Wu, Daxin
    Hu, Zhubin
    Li, Jiebo
    Sun, Xiang
    JOURNAL OF CHEMICAL PHYSICS, 2021, 155 (22):
  • [23] Intrusion detection systems using long short-term memory (LSTM)
    FatimaEzzahra Laghrissi
    Samira Douzi
    Khadija Douzi
    Badr Hssina
    Journal of Big Data, 8
  • [24] Intrusion detection systems using long short-term memory (LSTM)
    Laghrissi, FatimaEzzahra
    Douzi, Samira
    Douzi, Khadija
    Hssina, Badr
    JOURNAL OF BIG DATA, 2021, 8 (01)
  • [25] Monthly climate prediction using deep convolutional neural network and long short-term memory
    Guo, Qingchun
    He, Zhenfang
    Wang, Zhaosheng
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [26] Convolutional long short-term memory neural network for groundwater change prediction
    Patra, Sumriti Ranjan
    Chu, Hone-Jay
    FRONTIERS IN WATER, 2024, 6
  • [27] A hybrid convolutional neural network with long short-term memory for statistical arbitrage
    Eggebrecht, P.
    Luetkebohmert, E.
    QUANTITATIVE FINANCE, 2023, 23 (04) : 595 - 613
  • [28] A Convolutional Long Short-Term Memory Neural Network Based Prediction Model
    Tian, Y. H.
    Wu, Q.
    Zhang, Y.
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2020, 15 (05) : 1 - 12
  • [29] Email Spam Detection using Bidirectional Long Short Term Memory with Convolutional Neural Network
    Rahman, Sefat E.
    Ullah, Shofi
    2020 IEEE REGION 10 SYMPOSIUM (TENSYMP) - TECHNOLOGY FOR IMPACTFUL SUSTAINABLE DEVELOPMENT, 2020, : 1307 - 1311
  • [30] Spam detection in social media using convolutional and long short term memory neural network
    Gauri Jain
    Manisha Sharma
    Basant Agarwal
    Annals of Mathematics and Artificial Intelligence, 2019, 85 : 21 - 44