Coefficient Estimates of New Families of Analytic Functions Associated with q-Hermite Polynomials

被引:13
|
作者
Al-Shbeil, Isra [1 ]
Catas, Adriana [2 ]
Srivastava, Hari Mohan [3 ,4 ,5 ,6 ]
Aloraini, Najla [7 ]
机构
[1] Univ Jordan, Fac Sci, Dept Math, Amman 11942, Jordan
[2] Univ Oradea, Dept Math & Comp Sci, 1 Univ St, Oradea 410087, Romania
[3] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[4] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[5] Azerbaijan Univ, Dept Math & Informat, 71 Jeyhun Hajibeyli St, AZ-1007 Baku, Azerbaijan
[6] Int Telemat Univ Uninettuno, Sect Math, I-00186 Rome, Italy
[7] Qassim Univ, Coll Sci & Arts Onaizah, Dept Math, POB 6640, Buraydah 51452, Saudi Arabia
关键词
q-convolution operator; coefficient estimates; q-Hermite; bi-univalent functions; Babalola operator; CALCULUS;
D O I
10.3390/axioms12010052
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce two new subclasses of bi-univalent functions using the q-Hermite polynomials. Furthermore, we establish the bounds of the initial coefficients upsilon(2), upsilon(3), and upsilon(4) of the Taylor-Maclaurin series and that of the Fekete-Szego functional associated with the new classes, and we give the many consequences of our findings.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Applications of q-Hermite Polynomials to Subclasses of Analytic and Bi-Univalent Functions
    Zhang, Caihuan
    Khan, Bilal
    Shaba, Timilehin Gideon
    Ro, Jong-Suk
    Araci, Serkan
    Khan, Muhammad Ghaffar
    [J]. FRACTAL AND FRACTIONAL, 2022, 6 (08)
  • [2] ON THE q-HERMITE POLYNOMIALS AND THEIR RELATIONSHIP WITH SOME OTHER FAMILIES OF ORTHOGONAL POLYNOMIALS
    Szablowski, Pawel J. y
    [J]. DEMONSTRATIO MATHEMATICA, 2013, 46 (04) : 679 - 708
  • [3] MORE ON Q-HERMITE POLYNOMIALS
    DEBERGH, N
    [J]. MODERN PHYSICS LETTERS A, 1994, 9 (37) : 3481 - 3486
  • [4] Generalized q-hermite polynomials
    Berg, C
    Ruffing, A
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 223 (01) : 29 - 46
  • [5] Generalized q-Hermite Polynomials
    Christian Berg
    Andreas Ruffing
    [J]. Communications in Mathematical Physics, 2001, 223 : 29 - 46
  • [6] More on q-Hermite Polynomials
    Debergh, N.
    [J]. Modern Physics Letter A, 1994, 9 (37):
  • [7] Deformed algebras, q-hermite polynomials and q-Bessel functions
    Srinivasan, V
    Chaturvedi, S
    [J]. FRONTIERS OF FUNDAMENTAL PHYSICS 4, 2001, : 217 - 221
  • [8] Q-hermite polynomials and classical orthogonal polynomials
    Berg, C
    Ismail, MEH
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1996, 48 (01): : 43 - 63
  • [9] SOME MULTILINEAR GENERATING-FUNCTIONS FOR Q-HERMITE POLYNOMIALS
    SRIVASTAVA, HM
    JAIN, VK
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1989, 144 (01) : 147 - 157
  • [10] New q-Hermite polynomials: characterization, operators algebra and associated coherent states
    Chung, Won Sang
    Hounkonnou, Mahouton Norbert
    Sama, Arjika
    [J]. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2015, 63 (01): : 42 - 53