Globally conformally Kahler Einstein metrics on certain holomorphic bundles
被引:0
|
作者:
Feng, Zhiming
论文数: 0引用数: 0
h-index: 0
机构:
Leshan Normal Univ, Sch Math & Phys, Leshan 614000, Sichuan, Peoples R ChinaLeshan Normal Univ, Sch Math & Phys, Leshan 614000, Sichuan, Peoples R China
Feng, Zhiming
[1
]
机构:
[1] Leshan Normal Univ, Sch Math & Phys, Leshan 614000, Sichuan, Peoples R China
The subject of this paper is the explicit momentum construction of complete Einstein metrics by ODE methods. Using the Calabi ansatz, further generalized by Hwang-Singer, we show that there are non-trivial complete conformally Kahler-Einstein metrics on certain Hermitian holomorphic vector bundles and their subbundles over complete Kahler-Einstein manifolds. In special cases, we give the explicit expressions of these metrics. These examples show that there are a compact Kahler manifold M and its subvariety N whose codimension is greater than 1 such that there is a complete conformally Kahler-Einstein metric on M-N.
机构:
Univ Bucharest, Fac Math, Bucharest 010014, Romania
Romanian Acad, Inst Math Simion Stoilow, Bucharest 010702, RomaniaUniv Bucharest, Fac Math, Bucharest 010014, Romania
Ornea, Liviu
Parton, Maurizio
论文数: 0引用数: 0
h-index: 0
机构:
Univ G dAnnunzio, Dipartimento Sci, Pescara, ItalyUniv Bucharest, Fac Math, Bucharest 010014, Romania
Parton, Maurizio
Vuletescu, Victor
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bucharest, Fac Math, Bucharest 010014, RomaniaUniv Bucharest, Fac Math, Bucharest 010014, Romania
机构:
Henan Univ, Sch Math & Stat, Kaifeng 453007, Peoples R China
Univ Calif Riverside, Dept Math, Riverside, CA 92521 USAHenan Univ, Sch Math & Stat, Kaifeng 453007, Peoples R China