Remaining Useful Life Prediction of Lithium-Ion Battery Using ICC-CNN-LSTM Methodology

被引:6
|
作者
Rincon-Maya, Catherine [1 ]
Guevara-Carazas, Fernando [2 ]
Hernandez-Barajas, Freddy [3 ]
Patino-Rodriguez, Carmen [1 ]
Usuga-Manco, Olga [1 ]
机构
[1] Univ Antioquia, Dept Ingn Ind, Medellin 050010, Colombia
[2] Univ Nacl Colombia, Dept Ingn Mecan, Sede Medellin, Medellin 050034, Colombia
[3] Univ Nacl Colombia, Sede Medellin, Escuela Estadist, Medellin 050034, Colombia
关键词
RUL prediction; ICC; CNN; LSTM networks; R package; deep learning;
D O I
10.3390/en16207081
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In recent years, lithium-ion batteries have gained significant attention due to their crucial role in various applications, such as electric vehicles and renewable energy storage. Accurate prediction of the remaining useful life (RUL) of these batteries is essential for optimizing their performance and ensuring reliable operation. In this paper, we propose a novel methodology for RUL prediction using an individual control chart (ICC) to identify and remove degraded data, a convolutional neural network (CNN) to smooth the noise of sensor data and long short-term memory (LSTM) networks to effectively capture both spatial and temporal dependencies within battery data, enabling accurate RUL estimation. We evaluate our proposed model using a comprehensive dataset, and experimental results demonstrate its superior performance compared to existing methods. Our findings highlight the potential of ICC-CNN-LSTM for RUL prediction in lithium-ion batteries and provide valuable insights for future research.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Prediction for the Remaining Useful Life of Lithium-ion Battery Based on PCA-NARX
    Pang, Xiao-Qiong
    Wang, Zhu-Qing
    Zeng, Jian-Chao
    Jia, Jian-Fang
    Shi, Yuan-Hao
    Wen, Jie
    [J]. Beijing Ligong Daxue Xuebao/Transaction of Beijing Institute of Technology, 2019, 39 (04): : 406 - 412
  • [22] Prediction of Remaining Useful Life of the Lithium-Ion Battery Based on Improved Particle Filtering
    Wu, Tiezhou
    Zhao, Tong
    Xu, Siyun
    [J]. FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [23] Remaining useful life prediction of lithium-ion battery with unscented particle filter technique
    Miao, Qiang
    Xie, Lei
    Cui, Hengjuan
    Liang, Wei
    Pecht, Michael
    [J]. MICROELECTRONICS RELIABILITY, 2013, 53 (06) : 805 - 810
  • [24] Lithium-ion Battery Remaining Useful Life Prediction Under Grey Theory Framework
    Zhou, Zhenwei
    Huang, Yun
    Lu, Yudong
    Shi, Zhengyu
    Zhu, Liangbiao
    Wu, Jiliang
    Li, Hui
    [J]. PROCEEDINGS OF 2014 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-2014 HUNAN), 2014, : 297 - 300
  • [25] Lithium-ion battery remaining useful life prediction based on sequential Bayesian updating
    Zhao, Fei
    Guo, Ming
    Liu, Xuejuan
    [J]. Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2024, 30 (02): : 635 - 642
  • [26] Remaining Useful Life Prediction of Lithium-ion Battery Based on Discrete Wavelet Transform
    Wang, Yujie
    Pan, Rui
    Yang, Duo
    Tang, Xiaopeng
    Chen, Zonghai
    [J]. 8TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY (ICAE2016), 2017, 105 : 2053 - 2058
  • [27] Lithium-ion battery remaining useful life prediction based on GRU-RNN
    Song, Yuchen
    Li, Lyu
    Peng, Yu
    Liu, Datong
    [J]. 12TH INTERNATIONAL CONFERENCE ON RELIABILITY, MAINTAINABILITY, AND SAFETY (ICRMS 2018), 2018, : 317 - 322
  • [28] A naive Bayes model for robust remaining useful life prediction of lithium-ion battery
    Ng, Selina S. Y.
    Xing, Yinjiao
    Tsui, Kwok L.
    [J]. APPLIED ENERGY, 2014, 118 : 114 - 123
  • [29] Remaining useful life prediction of lithium-ion battery using an improved UPF method based on MCMC
    Zhang, Xin
    Miao, Qiang
    Liu, Zhiwen
    [J]. MICROELECTRONICS RELIABILITY, 2017, 75 : 288 - 295
  • [30] Remaining useful life prediction of lithium-ion batteries based on hybrid ISSA-LSTM
    Zou, Hongbo
    Chai, Yanhui
    Yang, Qinhe
    Chen, Junting
    [J]. Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2023, 51 (19): : 21 - 31