Thermal Stability and Hot Corrosion Performance of the AlCoCrFeNi2.1 High-Entropy Alloy Coating by Laser Cladding

被引:1
|
作者
Zhang, Li [1 ]
Ji, Yan [1 ]
Yang, Bin [1 ]
机构
[1] Univ Sci & Technol Beijing, Collaborat Innovat Ctr Steel Technol, Beijing 100083, Peoples R China
关键词
high-entropy alloy; laser cladding; thermal stability; hot corrosion; OXIDATION BEHAVIOR; MICROSTRUCTURE; RESISTANCE; HF;
D O I
10.3390/ma16175747
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Both crack-free AlCoCrFeNi2.1 eutectic high-entropy alloy (EHEA) and Y and Hf co-doping AlCoCrFeNi2.1 EHEA (YHf-EHEA) coatings were prepared by laser cladding. The solidification microstructure, thermal stability, and hot corrosion performance of the coatings at 900 & DEG;C under 75% Na2SO4 + 25% NaCl molten salts were investigated. The experimental results showed that the structure of the as-deposited coatings consisted of FCC and BCC/B2 phases. After heat treatment, an Al-rich L12 phase was precipitated in the FCC phase of all coatings. The grain sizes of the EHEA and YHf-EHEA coatings after heat treatment at 900 & DEG;C for 10 h increased by 27.5% and 15.7%, respectively, compared to the as-deposited coatings. Meanwhile, after hot corrosion, the spallation areas of the YHf-EHEA and EHEA coatings accounted for 14.98% and 5.67% of the total surface area, respectively. In this study, the Y and Hf co-doping did not change the microstructure morphology and phase structure of the coatings but did improve the thermal stability and resistance of the hot corrosion oxide scale spallation, providing a certain amount of data and theoretical support for the application of EHEA coatings as high-temperature protective coatings.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Nanoindentation behaviors of the AlCoCrFeNi2.1 eutectic high-entropy alloy: The effects of crystal structures
    Zhang, Hanyang
    Huang, Hu
    Wang, Chao
    Zhang, Hongyang
    Wu, Haoxiang
    Zhao, Hongwei
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1008
  • [32] Phase Selection and Microhardness of Directionally Solidified AlCoCrFeNi2.1 Eutectic High-Entropy Alloy
    Peng Peng
    Shengyuan Li
    Weiqi Chen
    Yuanli Xu
    Xudong Zhang
    Zhikun Ma
    Jiatai Wang
    Acta Metallurgica Sinica (English Letters), 2022, 35 : 1281 - 1290
  • [33] Microstructure and mechanical behavior of the directionally solidified AlCoCrFeNi2.1 eutectic high-entropy alloy
    Wischi, M.
    Campo, K. N.
    Starck, L. F.
    da Fonseca, E. B.
    Lopes, E. S. N.
    Caram, R.
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2022, 20 : 811 - 820
  • [34] Phase Selection and Microhardness of Directionally Solidified AlCoCrFeNi2.1 Eutectic High-Entropy Alloy
    Peng Peng
    Shengyuan Li
    Weiqi Chen
    Yuanli Xu
    Xudong Zhang
    Zhikun Ma
    Jiatai Wang
    Acta Metallurgica Sinica(English Letters), 2022, 35 (08) : 1281 - 1290
  • [35] Phase Selection and Microhardness of Directionally Solidified AlCoCrFeNi2.1 Eutectic High-Entropy Alloy
    Peng, Peng
    Li, Shengyuan
    Chen, Weiqi
    Xu, Yuanli
    Zhang, Xudong
    Ma, Zhikun
    Wang, Jiatai
    ACTA METALLURGICA SINICA-ENGLISH LETTERS, 2022, 35 (08) : 1281 - 1290
  • [36] The Effect of Zirconium on the Microstructure and Properties of Cast AlCoCrFeNi2.1 Eutectic High-Entropy Alloy
    Li, Rongbin
    Sun, Weichu
    Li, Saiya
    Cheng, Zhijun
    MATERIALS, 2024, 17 (23)
  • [37] Effects of oxidation on friction and wear properties of eutectic high-entropy alloy AlCoCrFeNi2.1
    Vo, Tri Dinh
    Tran, Bach
    Tieu, A. Kiet
    Wexler, David
    Deng, Guanyu
    Nguyen, Cuong
    TRIBOLOGY INTERNATIONAL, 2021, 160
  • [38] Thermal stability, microstructure and texture evolution of thermomechanical processed AlCoCrFeNi2.1 eutectic high entropy alloy
    Asoushe, M. H.
    Hanzaki, A. Zarei
    Abedi, H. R.
    Mirshekari, B.
    Wegener, T.
    Sajadifar, S., V
    Niendorf, T.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 799
  • [39] Quantification of microstructure in a eutectic high entropy alloy AlCoCrFeNi2.1
    Lozinko, Adrianna
    Mishin, Oleg V.
    Yu, Tianbo
    Klement, Uta
    Guo, Sheng
    Zhang, Yubin
    40TH RISO INTERNATIONAL SYMPOSIUM ON MATERIALS SCIENCE: METAL MICROSTRUCTURES IN 2D, 3D AND 4D, 2019, 580
  • [40] Microstructure and Tribological Properties of AlCoCrFeNi2.1 Dual-Phase High-Entropy Alloy Enhanced by Laser Remelting
    Dong, Yinghui
    Lu, Bingwen
    Cai, Zhaobing
    Lin, Guangpei
    Zhou, Xi
    Wang, Bingxu
    Wang, Chongmei
    Gu, Le
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2024,