Convolutional neural network for voice disorders classification using kymograms

被引:3
|
作者
Kumar, S. Pravin [1 ]
Narayanan, Nanthini [1 ]
Ramachandran, Janaki [1 ]
Thangavel, Bhavadharani [1 ]
机构
[1] Sri Sivasubramaniya Nadar Coll Engn, Ctr Healthcare Technol, Chennai 603110, India
关键词
Deep learning; Videokymography; Convolutional neural network; High-speed videoendoscopy; Voice disorder classification; Kymogram; VOCAL FOLD VIBRATION; VIDEOKYMOGRAPHY;
D O I
10.1016/j.bspc.2023.105159
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The diagnosis of voice disorders typically involves examination of laryngoscopic video frames by trained experts. Videokymography (VKG) is a useful clinical tool to represent the glottal dynamics and vibratory patterns as kymographic images. In this work, a 2D Convolutional Neural Network (2D CNN) was used to classify voice disorders from kymograms. High-speed videoendoscopy (HSV) recordings of the "Benchmark for Automatic Glottis Segmentation" (BAGLS) database were used as the corpus for the voice disorders. Kymographic images were generated from this corpus. For each classification problem addressed in this work, 90% of the generated kymograms were used to train the network and the remaining 10% was used for testing its classification performance. Classification accuracies of 94.237% and 94.8% were obtained for the two cases of binary classification (healthy vs disorders, and healthy vs muscle tension dysphonia). Ternary classification (healthy vs functional vs organic disorders) of the dataset yielded an accuracy of 93.1%.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Brain Tumor Classification Using Convolutional Neural Network
    Abiwinanda, Nyoman
    Hanif, Muhammad
    Hesaputra, S. Tafwida
    Handayani, Astri
    Mengko, Tati Rajab
    WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING 2018, VOL 1, 2019, 68 (01): : 183 - 189
  • [32] MOLECULE CLASSIFICATION USING VISUALIZATION AND CONVOLUTIONAL NEURAL NETWORK
    Lakatos, Istvan
    Hajdu, Andras
    Harangi, Balazs
    2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 1695 - 1698
  • [33] Cardiac Arrhythmia Classification Using Convolutional Neural Network
    Gamgami, Oumaima
    Korikache, Reda
    Chaieb, Amine
    ADVANCES IN SMART MEDICAL, IOT & ARTIFICIAL INTELLIGENCE, VOL 1, ICSMAI 2024, 2024, 11 : 297 - 308
  • [34] Fingerprint Classification using a Deep Convolutional Neural Network
    Pandya, Bhavesh
    Cosma, Georgina
    Alani, Ali A.
    Taherkhani, Aboozar
    Bharadi, Vinayak
    McGinnity, T. M.
    2018 4TH INTERNATIONAL CONFERENCE ON INFORMATION MANAGEMENT (ICIM2018), 2018, : 86 - 91
  • [35] Vehicle Type Classification Using Convolutional Neural Network
    Hicham, Bensedik
    Ahmed, Azough
    Mohammed, Meknasssi
    2018 IEEE 5TH INTERNATIONAL CONGRESS ON INFORMATION SCIENCE AND TECHNOLOGY (IEEE CIST'18), 2018, : 313 - 316
  • [36] Pathology Image Classification Using Convolutional Neural Network
    Li, Qunxian
    2015 2ND INTERNATIONAL CONFERENCE ON EDUCATION AND EDUCATION RESEARCH (EER 2015), PT 5, 2015, 9 : 331 - 335
  • [37] Breast Cancer Classification Using Convolutional Neural Network
    Alshanbari, Eman
    Alamri, Hanaa
    Alzahrani, Walaa
    Alghamdi, Manal
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2021, 21 (06): : 101 - 106
  • [38] WOODEN DOWELS CLASSIFICATION USING CONVOLUTIONAL NEURAL NETWORK
    Paulauskaite-Taraseviciene, Agne
    Sutiene, Kristina
    Pipiras, Laurynas
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2019, 20 (04): : 401 - 408
  • [39] Advertisement Image Classification Using Convolutional Neural Network
    An Tien Vo
    Hai Son Tran
    Thai Hoang Le
    2017 9TH INTERNATIONAL CONFERENCE ON KNOWLEDGE AND SYSTEMS ENGINEERING (KSE 2017), 2017, : 197 - 202
  • [40] Gemstone Classification Using Deep Convolutional Neural Network
    Chakraborty B.
    Mukherjee R.
    Das S.
    Journal of The Institution of Engineers (India): Series B, 2024, 105 (04) : 773 - 785