Convolutional neural network for voice disorders classification using kymograms

被引:3
|
作者
Kumar, S. Pravin [1 ]
Narayanan, Nanthini [1 ]
Ramachandran, Janaki [1 ]
Thangavel, Bhavadharani [1 ]
机构
[1] Sri Sivasubramaniya Nadar Coll Engn, Ctr Healthcare Technol, Chennai 603110, India
关键词
Deep learning; Videokymography; Convolutional neural network; High-speed videoendoscopy; Voice disorder classification; Kymogram; VOCAL FOLD VIBRATION; VIDEOKYMOGRAPHY;
D O I
10.1016/j.bspc.2023.105159
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The diagnosis of voice disorders typically involves examination of laryngoscopic video frames by trained experts. Videokymography (VKG) is a useful clinical tool to represent the glottal dynamics and vibratory patterns as kymographic images. In this work, a 2D Convolutional Neural Network (2D CNN) was used to classify voice disorders from kymograms. High-speed videoendoscopy (HSV) recordings of the "Benchmark for Automatic Glottis Segmentation" (BAGLS) database were used as the corpus for the voice disorders. Kymographic images were generated from this corpus. For each classification problem addressed in this work, 90% of the generated kymograms were used to train the network and the remaining 10% was used for testing its classification performance. Classification accuracies of 94.237% and 94.8% were obtained for the two cases of binary classification (healthy vs disorders, and healthy vs muscle tension dysphonia). Ternary classification (healthy vs functional vs organic disorders) of the dataset yielded an accuracy of 93.1%.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Classification of Voice Disorders Using a One-Dimensional Convolutional Neural Network
    Fujimura, Shintaro
    Kojima, Tsuyoshi
    Okanoue, Yusuke
    Shoji, Kazuhiko
    Inoue, Masato
    Omori, Koichi
    Hori, Ryusuke
    JOURNAL OF VOICE, 2022, 36 (01) : 15 - 20
  • [2] Voice Disorders Classification Using Multilayer Neural Network
    Salhi, Lotfi
    Mourad, Talbi
    Cherif, Adnene
    SCS: 2008 2ND INTERNATIONAL CONFERENCE ON SIGNALS, CIRCUITS AND SYSTEMS, 2008, : 473 - 478
  • [3] Voice Pathology Detection and Classification Using Convolutional Neural Network Model
    Mohammed, Mazin Abed
    Abdulkareem, Karrar Hameed
    Mostafa, Salama A.
    Abd Ghani, Mohd Khanapi
    Maashi, Mashael S.
    Garcia-Zapirain, Begonya
    Oleagordia, Ibon
    Alhakami, Hosam
    AL-Dhief, Fahad Taha
    APPLIED SCIENCES-BASEL, 2020, 10 (11):
  • [4] Voice disorder classification using convolutional neural network based on deep transfer learning
    Peng, Xiangyu
    Xu, Huoyao
    Liu, Jie
    Wang, Junlang
    He, Chaoming
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [5] Voice disorder classification using convolutional neural network based on deep transfer learning
    Xiangyu Peng
    Huoyao Xu
    Jie Liu
    Junlang Wang
    Chaoming He
    Scientific Reports, 13
  • [6] Water Classification Using Convolutional Neural Network
    Asghar, Saira
    Gilanie, Ghulam
    Saddique, Mubbashar
    Ullah, Hafeez
    Mohamed, Heba G.
    Abbasi, Irshad Ahmed
    Abbas, Mohamed
    IEEE ACCESS, 2023, 11 : 78601 - 78612
  • [7] Classification of Brainwaves Using Convolutional Neural Network
    Joshi, Swapnil R.
    Headley, Drew B.
    Ho, K. C.
    Pare, Denis
    Nair, Satish S.
    2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [8] Voice Frequency-Based Gender Classification Using Convolutional Neural Network for Smart Home
    Nasaruddin, Nasaruddin
    Tresma, Muhammad Agung P. Pratama
    Muchamad, Masduki Khamdan
    Fuadi, Zahrul
    IEEE ACCESS, 2024, 12 : 104190 - 104203
  • [9] Classification of Plants Using Convolutional Neural Network
    Saini, Gurinder
    Khamparia, Aditya
    Luhach, Ashish Kumar
    FIRST INTERNATIONAL CONFERENCE ON SUSTAINABLE TECHNOLOGIES FOR COMPUTATIONAL INTELLIGENCE, 2020, 1045 : 551 - 561
  • [10] Voice Disorders Identification Using Multilayer Neural Network
    Salhi, Lotfi
    Mourad, Talbi
    Cherif, Adnene
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2010, 7 (02) : 177 - 185