On projections of free semialgebraic sets

被引:1
|
作者
Drescher, Tom [1 ]
Netzer, Tim [1 ]
Thom, Andreas [2 ]
机构
[1] Univ Innsbruck, A-6020 Innsbruck, Austria
[2] Tech Univ Dresden, D-01062 Dresden, Germany
基金
奥地利科学基金会;
关键词
Semialgebraic set; projection theorem; Hermitian matrix;
D O I
10.1515/advgeom-2022-0021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We examine to what extent a projection theorem is possible in the non-commutative (free) setting. We first review and extend some results that count against a full free projection theorem. We then obtain a weak version of the projection theorem: projections along linear and separated variables yield semialgebraically parametrised free semi-algebraic sets.
引用
收藏
页码:207 / 214
页数:8
相关论文
共 50 条
  • [1] SEMIDEFINITE APPROXIMATIONS OF PROJECTIONS AND POLYNOMIAL IMAGES OF SEMIALGEBRAIC SETS
    Magron, Victor
    Henrion, Didier
    Lasserre, Jean-Bernard
    SIAM JOURNAL ON OPTIMIZATION, 2015, 25 (04) : 2143 - 2164
  • [2] MATRIX CONVEX HULLS OF FREE SEMIALGEBRAIC SETS
    Helton, J. William
    Klep, Igor
    Mccullough, Scott
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (05) : 3105 - 3139
  • [3] Separation of semialgebraic sets
    Acquistapace, F
    Andradas, C
    Broglia, F
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (03) : 703 - 728
  • [4] Parametrization of semialgebraic sets
    GonzalezLopez, MJ
    Recio, T
    Santos, F
    MATHEMATICS AND COMPUTERS IN SIMULATION, 1996, 42 (4-6) : 353 - 362
  • [5] Basicness of Semialgebraic Sets
    F. Acquistapace
    F. Broglia
    M.P. vélez
    Geometriae Dedicata, 1999, 78 : 229 - 240
  • [6] Basicness of semialgebraic sets
    Acquistapace, F
    Broglia, F
    Vélez, MP
    GEOMETRIAE DEDICATA, 1999, 78 (03) : 229 - 240
  • [7] Piecewise semialgebraic sets
    Zhu, CG
    Wang, RH
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2005, 23 (05) : 503 - 512
  • [8] Betti Numbers of Semialgebraic Sets Defined by Quantifier-Free Formulae
    Andrei Gabrielov
    Nicolai Vorobjov
    Discrete & Computational Geometry, 2005, 33 : 395 - 401
  • [9] GENERIC FUNCTIONS ON SEMIALGEBRAIC SETS
    BRUCE, JW
    QUARTERLY JOURNAL OF MATHEMATICS, 1986, 37 (146): : 137 - 165
  • [10] Betti numbers of semialgebraic sets defined by quantifier-free formulae
    Gabrielov, A
    Vorobjov, N
    DISCRETE & COMPUTATIONAL GEOMETRY, 2005, 33 (03) : 395 - 401