THE MULTISET PARTITION ALGEBRA

被引:1
|
作者
Narayanan, Sridhar [1 ]
Paul, Digjoy [2 ]
Srivastava, Shraddha [3 ]
机构
[1] Indian Inst Technol, Dept Math, Mumbai 400076, India
[2] Tata Inst Fundamental Res, Homi Bhabha Rd, Mumbai 400005, India
[3] Uppsala Univ, Dept Math, Angstromlaboratoriet, Lagerhyddsvagen 1, S-75106 Uppsala, Sweden
关键词
D O I
10.1007/s11856-022-2410-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the multiset partition algebra MPk(xi) over the polynomial ring F [xi], where F is a field of characteristic 0 and k is a positive integer. When xi is specialized to a positive integer n, we establish the Schur-Weyl duality between the actions of resulting algebra MPk(n) and the symmetric group S-n on Sym(k)(F-n). The construction of MPk(xi) generalizes to any vector lambda of non-negative integers yielding the algebra MP lambda (xi) over F[xi] so that there is Schur-Weyl duality between the actions of MP lambda (n) and S-n on Sym(lambda)(F-n). We find the generating function for the multiplicity of each irreducible representation of S-n in Sym(lambda) (F-n), as lambda varies, in terms of a plethysm of Schur functions. As consequences we obtain an indexing set for the irreducible representations of MPk(n) and the generating function for the multiplicity of an irreducible polynomial representation of GL(n)(F) when restricted to Sn. We show that MP lambda(xi) embeds inside the partition algebra P-|lambda|(xi). Using this embedding, we show that the multiset partition algebras are generically semisimple over F. Also, for the specialization of xi at v in F, we prove that MP lambda (v) is a cellular algebra.
引用
收藏
页码:453 / 500
页数:48
相关论文
共 50 条
  • [41] A Simplified Multiset-Partition Distribution Matching for PS-16QAM Optical Fiber Systems
    Jing, Xinlin
    Zhang, Jing
    Jin, Taowei
    Hu, Shaohua
    Qiu, Kun
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS PACIFIC RIM (CLEO-PR), 2020,
  • [42] On generalization of rough multiset via multiset ideals
    Hosny, Mona
    Raafat, Mahmoud
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2017, 33 (02) : 1249 - 1261
  • [43] The partition algebra and the plethysm coefficients I: Stability and Foulkes' conjecture
    Bowman, Chris
    Paget, Rowena
    JOURNAL OF ALGEBRA, 2024, 655 : 110 - 138
  • [44] Simple Modules for the Partition Algebra and Monotone Convergence of Kronecker Coefficients
    Bowman, Christopher
    De Visscher, Maud
    Enyang, John
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (04) : 1059 - 1097
  • [45] Multiset group and its generalization to (A, B)-multiset group
    Suma, P.
    John, Sunil Jacob
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, (50): : 602 - 617
  • [46] Multiset automata
    Csuhaj-Varjú, Erzsébet
    Martín-Vide, Carlos
    Mitrana, Victor
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2001, 2235 : 69 - 83
  • [47] THE CONCEPT OF MULTISET
    MONRO, GP
    ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1987, 33 (02): : 171 - 178
  • [48] Multiset Neurons
    Costa, Luciano da Fontoura
    arXiv, 2021,
  • [49] On Multiset Ordering
    Bancerek, Grzegorz
    FORMALIZED MATHEMATICS, 2016, 24 (02): : 95 - 106
  • [50] Multiset automata
    Csuhaj-Varjú, E
    Martín-Vide, C
    Mitrana, V
    MULTISET PROCESSING: MATHEMATICAL, COMPUTER SCIENCE, AND MOLECULAR COMPUTING POINTS OF VIEW, 2001, 2235 : 69 - 83