Joining of C/C composite with high entropy alloy interlayers via spark plasma sintering and its mechanical strength at 1600 °C

被引:5
|
作者
Wang, Xincheng [1 ,2 ]
Saunders, Theo G. [2 ]
Wang, Yichen [2 ]
Fu, Li [1 ]
Reece, Michael J. [2 ]
机构
[1] Northwestern Polytech Univ, Sch Mat Sci & Engn, Xian 710072, Peoples R China
[2] Queen Mary Univ London, Sch Engn & Mat Sci, Mile End Rd, London E1 4NS, England
基金
中国国家自然科学基金;
关键词
Carbon/carbon composites; High entropy materials; Spark plasma sintering; Joining; Ultra -high temperature strength; CARBON-CARBON COMPOSITES; MICROSTRUCTURE; JOINTS; CERAMICS; CARBIDE; NB;
D O I
10.1016/j.jeurceramsoc.2023.09.068
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A novel method is developed to join C/C composites via spark plasma sintering (SPS) using ZrHfNbTa and TiZrHfTa high entropy alloys as interlayers. The joint microstructure, interface reaction and shear strength at 1600 degrees C were investigated. For both interlayers, the C/C joint consisted of a single high entropy carbide phase. However, the use of different high entropy alloy interlayers resulted in differences in the micro-homogeneity of the formed high entropy carbide as well as the thickness of the joint zone. Both formed (Zr-Hf-Nb-Ta)C and (Ti-Zr-Hf-Ta)C high entropy carbides, which were homogeneous on the atomic scale, and no impurities were found at the grain boundaries. The shear strengths of the C/C-ZrHfNbTa-C/C joint and C/C-TiZrHfTa-C/C joint at 1600 degrees C were comparable, with values of 23.5 +/- 1.2 MPa and 24.6 +/- 2.5 MPa, respectively, which are more than twice the shear strength obtained with pure Ti foil (11.6 +/- 3.6 MPa).
引用
收藏
页码:815 / 821
页数:7
相关论文
共 50 条
  • [31] Fabrication and mechanical properties of TiC reinforced CoCrFeMnNi high-entropy alloy composite by water atomization and spark plasma sintering
    Yim, Dami
    Sathiyamoorthi, Praveen
    Hong, Soon-Jik
    Kim, Hyoung Seop
    Journal of Alloys and Compounds, 2020, 781 : 389 - 396
  • [32] Nb(Si,C,N) composite materials densified by spark plasma sintering
    Seifert, Martin
    Shen, Zhijian
    Krenkel, Walter
    Motz, Guenter
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2015, 35 (12) : 3319 - 3327
  • [33] Fabrication and mechanical properties of TiC reinforced CoCrFeMnNi high-entropy alloy composite by water atomization and spark plasma sintering
    Yim, Dami
    Sathiyamoorthi, Praveen
    Hong, Soon-Jik
    Kim, Hyoung Seop
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 781 : 389 - 396
  • [34] Preparation of high-strength (Ta,W)C solid-solutions by spark plasma sintering
    Demirskyi, Dmytro
    Yoshimi, Kyosuke
    Suzuki, Tohru S.
    Vasylkiv, Oleg O.
    INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2023, 20 (05) : 2747 - 2759
  • [35] High-entropy (HfTaTiNbZr)C and (HfTaTiNbMo)C carbides fabricated through reactive high-energy ball milling and spark plasma sintering
    Moskovskikh, D. O.
    Vorotilo, S.
    Sedegov, A. S.
    Kuskov, K., V
    Bardasova, K., V
    Kiryukhantsev-korneev, Ph, V
    Zhukovskyi, M.
    Mukasyan, A. S.
    CERAMICS INTERNATIONAL, 2020, 46 (11) : 19008 - 19014
  • [36] An investigation of the magnetic, mechanical, and kinetic characteristics of CuCrFeTiNi high entropy alloy by mechanical alloying and spark plasma sintering
    Zeraati, Malihe
    Feizabad, Mohammad Hossein Khazaei
    Khayati, Gholam Reza
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 958
  • [37] Fabrication of a novel magnetic high entropy alloy with desirable mechanical properties by mechanical alloying and spark plasma sintering
    Karimi, M. A.
    Shamanian, M.
    Enayati, M. H.
    Adamzadeh, M.
    Imani, M.
    JOURNAL OF MANUFACTURING PROCESSES, 2022, 84 : 859 - 870
  • [38] AlCoCrFeNiTi-C alloy with TiC nano precipitates processed through mechanical alloying and spark plasma sintering
    Sekhar, R. Anand
    Shifin, S.
    Kumar, Anand Anil
    Nair, Akash Hemanth
    Sudhees, Akshai
    Krishnan, Jagath
    MATERIALS LETTERS, 2021, 285
  • [39] Defects in the High Entropy Alloy HfNbTaTiZr Prepared by Spark Plasma Sintering
    Lukac, Frantisek
    Musalek, Radek
    Vilemova, Monika
    Cizek, Jakub
    Kuriplach, Jan
    Straska, Jitka
    Zyka, Jiri
    Malek, Jaroslav
    18TH INTERNATIONAL CONFERENCE ON POSITRON ANNIHILATION (ICPA-18), 2019, 2182
  • [40] Mechanical and microstructure comparison between microwave and spark plasma sintering of Al-B4C composite
    Ghasali, Ehsan
    Alizadeh, Masoud
    Ebadzadeh, Touradj
    JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 655 : 93 - 98