FLNA: An Energy-Efficient Point Cloud Feature Learning Accelerator with Dataflow Decoupling

被引:1
|
作者
Lyu, Dongxu [1 ]
Li, Zhenyu [1 ]
Chen, Yuzhou [1 ]
Xu, Ningyi [1 ,3 ]
He, Guanghui [1 ,2 ,3 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Shanghai, Peoples R China
[2] Shanghai Jiao Tong Univ, AI Inst, MoE, Key Lab Artificial Intelligence, Shanghai, Peoples R China
[3] Huixi Technol, Chongqing, Peoples R China
基金
美国国家科学基金会;
关键词
Point Cloud; Feature Learning Accelerator; Algorithm-architecture Co-design; Sparsity Exploitation;
D O I
10.1109/DAC56929.2023.10247674
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Grid-based feature learning network plays a key role in recent point-cloud based 3D perception. However, high point sparsity and special operators lead to large memory footprint and long processing latency, posing great challenges to hardware acceleration. We propose FLNA, a novel feature learning accelerator with algorithm-architecture co-design. At algorithm level, the dataflow-decoupled graph is adopted to reduce 86% computation by exploiting inherent sparsity and concat redundancy. At hardware design level, we customize a pipelined architecture with block-wise processing, and introduce transposed SRAM strategy to save 82.1% access power. Implemented on a 40nm technology, FLNA achieves 13.4 - 43.3x speedup over RTX 2080Ti GPU. It rivals the state-of-the-art accelerator by 1.21x energy-efficiency improvement with 50.8% latency reduction.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] An Energy-efficient Approach based on Learning Automata in Mobile Cloud Computing
    Arani, Mostafa Ghobaei
    Moghadasi, Najmeh
    INTERNATIONAL JOURNAL OF GRID AND DISTRIBUTED COMPUTING, 2015, 8 (04): : 47 - 58
  • [22] Automatic facade modelling using point cloud data for energy-efficient retrofitting
    Previtali, M.
    Barazzetti, L.
    Brumana, R.
    Cuca, B.
    Oreni, D.
    Roncoroni, F.
    Scaioni, M.
    APPLIED GEOMATICS, 2014, 6 (02) : 95 - 113
  • [23] Energy -Efficient CNNs Accelerator Implementation on FPGA with Optimized Storage and Dataflow
    Zhang, Yonghua
    Jiang, Hongxu
    Li, Xiaobin
    Miao, Rui
    Nie, Jinyan
    Du, Yu
    19TH IEEE INTERNATIONAL SYMPOSIUM ON PARALLEL AND DISTRIBUTED PROCESSING WITH APPLICATIONS (ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM 2021), 2021, : 1209 - 1214
  • [24] Energy-Efficient Cloud Resource Management
    Dabbagh, Mehiar
    Hamdaoui, Bechir
    Guizani, Mohsen
    Rayes, Ammar
    2014 IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (INFOCOM WKSHPS), 2014, : 386 - 391
  • [25] Energy-efficient approaches to Cloud Computing
    Asha, N.
    Rao, G. Raghavendra
    2014 INTERNATIONAL CONFERENCE ON CONTEMPORARY COMPUTING AND INFORMATICS (IC3I), 2014, : 337 - 342
  • [26] Laius: an energy-efficient FPGA CNN accelerator with the support of a fixed-point training framework
    Nie, Zikai
    Li, Zhisheng
    Wang, Lei
    Guo, Shasha
    Deng, Yu
    Deng, Rangyu
    Dou, Qiang
    INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2020, 21 (03) : 418 - 428
  • [27] An Energy-Efficient Silicon Photonic-Assisted Deep Learning Accelerator for Big Data
    Li, Mengkun
    Wang, Yongjian
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2020, 2020
  • [28] An Energy-Efficient Deep Reinforcement Learning Accelerator With Transposable PE Array and Experience Compression
    Kim, Changhyeon
    Kang, Sanghoon
    Choi, Sungpill
    Shin, Dongjoo
    Kim, Youngwoo
    Yoo, Hoi-Jun
    IEEE SOLID-STATE CIRCUITS LETTERS, 2019, 2 (11): : 228 - 231
  • [29] Dataflow analysis for energy-efficient scratch-pad memory management
    Chen, GY
    Kandemir, M
    ISLPED '05: PROCEEDINGS OF THE 2005 INTERNATIONAL SYMPOSIUM ON LOW POWER ELECTRONICS AND DESIGN, 2005, : 327 - 330
  • [30] A Database Accelerator for Energy-Efficient Query Processing and Optimization
    Haas, Sebastian
    Arnold, Oliver
    Scholze, Stefan
    Hoeppner, Sebastian
    Ellguth, Georg
    Dixius, Andreas
    Ungethuem, Annett
    Mier, Eric
    Noethen, Benedikt
    Matus, Emil
    Schiefer, Stefan
    Cederstroem, Love
    Pilz, Fabian
    Mayr, Christian
    Schueffny, Rene
    Lehner, Wolfgang
    Fettweis, Gerhard P.
    2016 2ND IEEE NORDIC CIRCUITS AND SYSTEMS CONFERENCE (NORCAS), 2016,