Highly efficient production of monocyclic aromatics from catalytic co-pyrolysis of biomass and plastic with nitrogen-doped activated carbon catalyst

被引:28
|
作者
Lin, Xiaona [1 ,2 ]
Chen, Xiaoyun [1 ,2 ]
Fu, Peng [1 ,2 ]
Tang, Binbin [1 ,2 ]
Bi, Dongmei [1 ,2 ]
机构
[1] Shandong Univ Technol, Sch Agr Engn & Food Sci, Zibo 255000, Peoples R China
[2] Shandong Univ Technol, Shandong Res Ctr Engn & Technol Clean Energy, Zibo 255000, Peoples R China
基金
中国国家自然科学基金;
关键词
Biomass; Plastics; Co; -pyrolysis; Monocyclic aromatics; Nitrogen doping; Activated carbon; LIGNOCELLULOSIC BIOMASS; DENSITY POLYETHYLENE; POROUS CARBON; DEOXYGENATION; PERFORMANCE; WASTE; WOOD;
D O I
10.1016/j.cej.2023.145783
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Nitrogen-doped activated carbon catalysts (NAC) were prepared via a two-step process involving the cocarbonization of coconut shell and urea, followed by activation with KOH. These NAC were then employed in the catalytic co-pyrolysis of corn stover (CS) and high-density polyethylene (HDPE) using a fixed bed reactor. The characterization results demonstrated that nitrogen doping led to a larger specific surface area, an enhanced microporous structure, and abundant nitrogen-containing functional groups, which facilitated the production of liquid and promoting the selectivity of monocyclic aromatics (MAHs). The introduced pyridinic-N and pyrroliticN provided sufficient active sites for deoxygenation, cracking, aromatization, and Diels-Alder reactions of copyrolysis vapors that augmented the formation of MAHs, as well as high calorific value syngas including H2, CH4, and C2+ hydrocarbons. The highest MAHs yield of 62.41% was achieved at a urea to coconut shell ratio of 0.8, whereas an excessive amount of urea resulted in cyclization and polymerization reactions of MAHs to form polycyclic aromatics (PAHs). Accordingly, controlling temperature and catalyst to raw material ratios enabled further regulation of the production and selectivity of MAHs. NAC with a better pore structure and more active sites exhibited excellent catalytic activity for value-added MAHs production in the co-pyrolysis of CS and HDPE, benefiting the resource utilization of organic solid waste with carbon-based catalysts.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Nitrogen-doped nanoporous carbon nanosheets derived from plant biomass: an efficient catalyst for oxygen reduction reaction
    Chen, Ping
    Wang, Li-Kun
    Wang, Gan
    Gao, Min-Rui
    Ge, Jin
    Yuan, Wen-Jing
    Shen, Yu-Hua
    Xie, An-Jian
    Yu, Shu-Hong
    ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (12) : 4095 - 4103
  • [32] Biomass-Tar-Enabled Nitrogen-Doped Highly Ultramicroporous Carbon as an Efficient Absorbent for CO2 Capture
    Li, Denian
    Chen, Jian
    Fan, Yukun
    Deng, Lifang
    Shan, Rui
    Chen, Huibing
    Yuan, Haoran
    Chen, Yong
    ENERGY & FUELS, 2019, 33 (09) : 8927 - 8936
  • [33] Renewable jet-fuel range hydrocarbons production from co-pyrolysis of lignin and soapstock with the activated carbon catalyst
    Duan, Dengle
    Zhang, Yayun
    Lei, Hanwu
    Villota, Elmar
    Ruan, Roger
    WASTE MANAGEMENT, 2019, 88 : 1 - 9
  • [34] Efficient Hydrogen Production from Formic Acid Using Nitrogen-Doped Activated Carbon Supported Pd
    Yao, Mengqin
    Liang, Wuyang
    Chen, Honglin
    Zhang, Xiaoming
    CATALYSIS LETTERS, 2020, 150 (08) : 2377 - 2384
  • [35] Efficient Hydrogen Production from Formic Acid Using Nitrogen-Doped Activated Carbon Supported Pd
    Mengqin Yao
    Wuyang Liang
    Honglin Chen
    Xiaoming Zhang
    Catalysis Letters, 2020, 150 : 2377 - 2384
  • [36] Nitrogen-doped porous carbon from biomass with superior catalytic performance for acetylene hydrochlorination
    Shen, Zhaobing
    Liu, Yue
    Han, Yejun
    Qin, Yejun
    Li, Jinhua
    Xing, Ping
    Jiang, Biao
    RSC ADVANCES, 2020, 10 (25) : 14556 - 14569
  • [37] Investigation of the HZSM-5 catalyzed co-pyrolysis of biomass and plastic: Product yield, carbon distribution and catalyst deactivation
    Dorado, Christina
    Mullen, Charles
    Boateng, Akwasi
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [38] Nitrogen-doped activated carbon as a metal free catalyst for hydrogen production in microbial electrolysis cells
    Zhang, Bo
    Wen, Zhenhai
    Ci, Suqin
    Chen, Junhong
    He, Zhen
    RSC ADVANCES, 2014, 4 (90): : 49161 - 49164
  • [39] Catalytic co-pyrolysis of blended biomass-plastic mixture using synthesized metal oxide(MO)-dolomite based catalyst
    Harith, N.
    Hafriz, R. S. R. M.
    Arifin, N. A.
    Tan, Ee Sann
    Salmiaton, A.
    Shamsuddin, A. H.
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2022, 168
  • [40] Segmented catalytic co-pyrolysis of biomass and high-density polyethylene for aromatics production with MgCl2 and HZSM-5
    Xue, Xiangfei
    Pan, Zeyou
    Zhang, Changsen
    Wang, Dengtai
    Xie, Yunyun
    Zhang, Ruiqin
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2018, 134 : 209 - 217