Deep learning and geometric deep learning: An introduction for mathematicians and physicists

被引:3
|
作者
Fioresi, R. [1 ]
Zanchetta, F. [1 ]
机构
[1] FaBiT, Via San Donato 15, I-41127 Bologna, Italy
关键词
Machine learning; mathematical physics; NETWORKS;
D O I
10.1142/S0219887823300064
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this expository paper, we want to give a brief introduction, with few key references for further reading, to the inner functioning of the new and successful algorithms of Deep Learning and Geometric Deep Learning with a focus on Graph Neural Networks. We go over the key ingredients for these algorithms: the score and loss function and we explain the main steps for the training of a model. We do not aim to give a complete and exhaustive treatment, but we isolate few concepts to give a fast introduction to the subject. We provide some appendices to complement our treatment discussing Kullback-Leibler divergence, regression, Multi-layer Perceptrons and the Universal Approximation theorem.
引用
收藏
页数:39
相关论文
共 50 条
  • [31] Geometric deep learning and equivariant neural networks
    Jan E. Gerken
    Jimmy Aronsson
    Oscar Carlsson
    Hampus Linander
    Fredrik Ohlsson
    Christoffer Petersson
    Daniel Persson
    Artificial Intelligence Review, 2023, 56 : 14605 - 14662
  • [32] Special issue: Deep learning Introduction
    Bach, Francis
    Poggio, Tomaso
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2016, 5 (02) : 103 - 104
  • [33] Introduction to Deep Learning: Part 2
    Gupta, Amit
    CHEMICAL ENGINEERING PROGRESS, 2018, 114 (10) : 39 - 46
  • [34] Ensemble Geometric Deep Learning of Aqueous Solubility
    Ghahremanpour, Mohammad M.
    Saar, Anastasia
    Tirado-Rives, Julian
    Jorgensen, William L.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 63 (23) : 7338 - 7349
  • [35] Geometric deep learning: progress, applications and challenges
    Wenming CAO
    Canta ZHENG
    Zhiyue YAN
    Weixin XIE
    Science China(Information Sciences), 2022, 65 (02) : 238 - 240
  • [36] Geometric deep learning of particle motion by MAGIK
    Fatemi, Bahare
    Halcrow, Jonathan
    Jaqaman, Khuloud
    NATURE MACHINE INTELLIGENCE, 2023, 5 (05) : 483 - 484
  • [37] SKELETAL POINT REPRESENTATIONS WITH GEOMETRIC DEEP LEARNING
    Khargonkar, Ninad
    Paniagua, Beatriz
    Vicory, Jared
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [38] Geometric deep learning and equivariant neural networks
    Gerken, Jan E.
    Aronsson, Jimmy
    Carlsson, Oscar
    Linander, Hampus
    Ohlsson, Fredrik
    Petersson, Christoffer
    Persson, Daniel
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (12) : 14605 - 14662
  • [39] MongeNet: Efficient Sampler for Geometric Deep Learning
    Lebrat, Leo
    Santa Cruz, Rodrigo
    Fookes, Clinton
    Salvado, Olivier
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 16659 - 16668
  • [40] Introduction to Deep Learning: Part 1
    Gupta, Amit
    CHEMICAL ENGINEERING PROGRESS, 2018, 114 (06) : 22 - 29