Epitaxially strained ultrathin LaNiO3/LaAlO3 and LaNiO3/SrTiO3 superlattices: A density functional theory plus U study

被引:2
|
作者
Kim, Heung-Sik [1 ,2 ,3 ]
Park, Sang Hyeon [1 ]
Han, Myung Joon [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Phys, Daejun 305701, South Korea
[2] Kangwon Natl Univ, Dept Phys, Chunchon 24341, South Korea
[3] Kangwon Nat Univ, Inst Quantum Convergence Technol, Chunchon 24341, South Korea
基金
新加坡国家研究基金会;
关键词
Nickelate superlattice; Density functional theory; Epitaxial strain; DFT plus U; NICKEL-OXIDE; TRANSITIONS;
D O I
10.1016/j.cap.2023.03.012
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
By employing first-principles electronic structure calculations we investigate nickelate superlattices [LaNiO3](1)/ [LaAlO3](1) and [LaNiO3](1)/[SrTiO3](1) with (001) orientation under epitaxial tensile strain. Within density functional theory augmented by mean-field treatment of on-site electronic correlations, the ground states show remarkable dependence on the correlation strength and the strain. In the weakly and intermediately correlated regimes with small epitaxial strain, the charge-disproportionated insulating states with antiferromagneitc order is favored over the other orbital and spin ordered phases. On the other hand, in the strongly correlated regime or under the large tensile strain, ferromagnetic spin states with Jahn-Teller orbital order become most stable. The effect from polar interfaces in LaNiO3](1)/[SrTiO3](1) is found to be noticeable in our single-layered geometry. Detailed discussion is presented in comparison with previous experimental and theoretical studies.
引用
收藏
页码:53 / 60
页数:8
相关论文
共 50 条
  • [1] Epitaxially strained ultrathin LaNiO3/LaAlO3 and LaNiO3/SrTiO3 superlattices: a density functional theory + U study
    Kim, Heung-Sik
    Park, Sang Hyeon
    Han, Myung Joon
    arXiv, 2023,
  • [2] Oxygen vacancy formation and electronic reconstruction in strained LaNiO3 and LaNiO3/LaAlO3 superlattices
    Geisler, Benjamin
    Follmann, Simon
    Pentcheva, Rossitza
    PHYSICAL REVIEW B, 2022, 106 (15)
  • [3] Lattice distortions and octahedral rotations in epitaxially strained LaNiO3/LaAlO3 superlattices
    Kinyanjui, M. K.
    Lu, Y.
    Gauquelin, N.
    Wu, M.
    Frano, A.
    Wochner, P.
    Reehuis, M.
    Christiani, G.
    Logvenov, G.
    Habermeier, H. -U.
    Botton, G. A.
    Kaiser, U.
    Keimer, B.
    Benckiser, E.
    APPLIED PHYSICS LETTERS, 2014, 104 (22)
  • [4] Atomically resolved EELS mapping of the interfacial structure of epitaxially strained LaNiO3/LaAlO3 superlattices
    Gauquelin, N.
    Benckiser, E.
    Kinyanjui, M. K.
    Wu, M.
    Lu, Y.
    Christiani, G.
    Logvenov, G.
    Habermeier, H. -U.
    Kaiser, U.
    Keimer, B.
    Botton, G. A.
    PHYSICAL REVIEW B, 2014, 90 (19)
  • [5] Quantum confinement of Mott electrons in ultrathin LaNiO3/LaAlO3 superlattices
    Liu, Jian
    Okamoto, S.
    van Veenendaal, M.
    Kareev, M.
    Gray, B.
    Ryan, P.
    Freeland, J. W.
    Chakhalian, J.
    PHYSICAL REVIEW B, 2011, 83 (16):
  • [6] Orbital control in strained ultra-thin LaNiO3/LaAlO3 superlattices
    Freeland, J. W.
    Liu, Jian
    Kareev, M.
    Gray, B.
    Kim, J. W.
    Ryan, P.
    Pentcheva, R.
    Chakhalian, J.
    EPL, 2011, 96 (05)
  • [7] Quasiparticle self-consistent GW study of LaNiO3 and LaNiO3/LaAlO3 superlattice
    Han, Myung Joon
    Kino, Hiori
    Kotani, Takao
    PHYSICAL REVIEW B, 2014, 90 (03):
  • [8] Ruddlesden-Popper faults in LaNiO3/LaAlO3 superlattices
    Detemple, E.
    Ramasse, Q. M.
    Sigle, W.
    Cristiani, G.
    Habermeier, H. -U.
    Keimer, B.
    van Aken, P. A.
    JOURNAL OF APPLIED PHYSICS, 2012, 112 (01)
  • [9] Effect of polar discontinuity on the growth of LaNiO3/LaAlO3 superlattices
    Liu, Jian
    Kareev, M.
    Prosandeev, S.
    Gray, B.
    Ryan, P.
    Freeland, J. W.
    Chakhalian, J.
    APPLIED PHYSICS LETTERS, 2010, 96 (13)
  • [10] Resistive switching behavior of LaNiO3/Nb:SrTiO3 and LaNiO3/ZrO2/Nb: SrTiO3 structures
    Bian, Weibai
    Zhang, Ruixuan
    Chen, Xiaohui
    Jia, Jiqiang
    MATERIALS TODAY COMMUNICATIONS, 2024, 40