Market prediction using machine learning based on social media specific features

被引:1
|
作者
Sekioka, Satoshi [1 ]
Hatano, Ryo [1 ]
Nishiyama, Hiroyuki [1 ]
机构
[1] Tokyo Univ Sci, Grad Sch Sci & Technol, Dept Ind Adm, 2641 Yamazaki, Chiba, Japan
关键词
Machine learning; Natural language processing; Cryptocurrency;
D O I
10.1007/s10015-023-00857-z
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
In recent years, unspecified messages posted on social media have significantly affected the price fluctuations of online-traded products, such as stocks and virtual currencies. In this study, we investigate whether information on Twitter and natural language expressions in tweets can be used as features for predicting market information, such as price changes in virtual currencies and sudden price changes. Our method is based on features created using Sentence-BERT for tweet data. These features were used to train the light-gradient boosting machine (LightGBM), a variant of the gradient boosting ensemble framework that uses tree-based machine learning models, with the target variable being a sudden change in closing price (sudden drop, sudden rise, or no sudden change). We set up a classification task with three labels using the features created by the proposed method for prediction. We compared the prediction results with and without these new features and discussed the advantages of linguistic features for predicting changes in cryptocurrency trends.
引用
收藏
页码:410 / 417
页数:8
相关论文
共 50 条
  • [41] Sentiment Analysis of Social Media Networks Using Machine Learning
    Abd El-Jawad, Mohammed H.
    Hodhod, Rania
    Omar, Yasser M. K.
    2018 14TH INTERNATIONAL COMPUTER ENGINEERING CONFERENCE (ICENCO), 2018, : 174 - 176
  • [42] Detection of Cyberbullying on Social Media Platforms Using Machine Learning
    Ali, Mohammad Usmaan
    Lefticaru, Raluca
    ADVANCES IN COMPUTATIONAL INTELLIGENCE SYSTEMS, UKCI 2023, 2024, 1453 : 220 - 233
  • [43] Detecting Fake Images on Social Media using Machine Learning
    AlShariah, Njood Mohammed
    Saudagar, Abdul Khader Jilani
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (12) : 170 - 176
  • [44] Detecting Virtual Harassment in Social Media Using Machine Learning
    Benassou, Lina Feriel
    Bendaouia, Safa
    Salem, Osman
    Mehaoua, Ahmed
    MACHINE LEARNING FOR NETWORKING, MLN 2023, 2024, 14525 : 185 - 198
  • [45] Social Media-based Overweight Prediction Using Deep Learning Completed Research
    Huangfu, Luwen
    Zeng, Daniel
    AMCIS 2018 PROCEEDINGS, 2018,
  • [46] Indian Stock Market Prediction Using Machine Learning and Sentiment Analysis
    Pathak, Ashish
    Shetty, Nisha P.
    COMPUTATIONAL INTELLIGENCE IN DATA MINING, 2019, 711 : 595 - 603
  • [47] Sustainable Stock Market Prediction Framework Using Machine Learning Models
    Garcia Penalvo, Francisco Jose
    Maan, Tamanna
    Singh, Sunil K.
    Kumar, Sudhakar
    Arya, Varsha
    Chui, Kwok Tai
    Singh, Gaurav Pratap
    INTERNATIONAL JOURNAL OF SOFTWARE SCIENCE AND COMPUTATIONAL INTELLIGENCE-IJSSCI, 2022, 14 (01):
  • [48] Stock Market Prediction Using Microblogging Sentiment Analysis and Machine Learning
    Koukaras, Paraskevas
    Nousi, Christina
    Tjortjis, Christos
    TELECOM, 2022, 3 (02): : 358 - 378
  • [49] Stock Market Prediction using Machine Learning Algorithms: A Classification Study
    Misra, Meghna
    Yadav, Ajay Prakash
    Kaur, Harkiran
    2018 INTERNATIONAL CONFERENCE ON RECENT INNOVATIONS IN ELECTRICAL, ELECTRONICS & COMMUNICATION ENGINEERING (ICRIEECE 2018), 2018, : 2475 - 2478
  • [50] Using Autoregressive Modelling and Machine Learning for Stock Market Prediction and Trading
    Hushani, Phillip
    THIRD INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY, 2019, 797 : 767 - 774