Four-dimensional generalized Ricci flows with nilpotent symmetry

被引:0
|
作者
Gindi, Steven [1 ]
Streets, Jeffrey [2 ]
机构
[1] Binghamton Univ, Whitney Hall, Binghamton, NY 13902 USA
[2] Univ Calif Irvine, Rowland Hall, Irvine, CA 92617 USA
关键词
Generalized Ricci flow; T-DUALITY; RENORMALIZATION; REGULARITY; GEOMETRY; ENTROPY;
D O I
10.1142/S0219199722500250
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study solutions to generalized Ricci flow on four-manifolds with a nilpotent, codimension 1 symmetry. We show that. all such flows are immortal, and satisfy type III curvature and diameter estimates. Using a new kind of monotone energy adapted to this setting, we show that blowdown limits lie in a canonical finite-dimensional family of solutions. The results are new for Ricci flow.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Generalized Osserman four-dimensional manifolds
    Bonome, A
    Castro, P
    García-Río, E
    CLASSICAL AND QUANTUM GRAVITY, 2001, 18 (22) : 4813 - 4822
  • [22] Duality symmetry in four-dimensional string actions
    Boonstra, H. J.
    De Roo, M.
    Physics Letters. Section B: Nuclear, Elementary Particle and High-Energy Physics, 1995, 353 (105):
  • [23] On hyperbolic motion and limiting four-dimensional symmetry
    Ernst, A
    CHINESE JOURNAL OF PHYSICS, 2002, 40 (06) : 583 - 589
  • [24] Four-dimensional Einstein manifolds with Heisenberg symmetry
    V. Cortés
    A. Saha
    Annali di Matematica Pura ed Applicata (1923 -), 2022, 201 : 1075 - 1095
  • [25] Four-dimensional Einstein manifolds with Heisenberg symmetry
    Cortes, V
    Saha, A.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2022, 201 (03) : 1075 - 1095
  • [26] The Octaplex, Symmetry in Four-Dimensional Geometry and Art
    Constant, Jean
    MATERIALS TODAY-PROCEEDINGS, 2018, 5 (08) : 15935 - 15942
  • [27] Transitive Novikov Algebras on Four-Dimensional Nilpotent Lie Algebras
    Chengming Bai
    Daoji Meng
    International Journal of Theoretical Physics, 2001, 40 : 1761 - 1768
  • [28] On the blow-up of four-dimensional Ricci flow singularities
    Maximo, Davi
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2014, 692 : 153 - 171
  • [29] Four-dimensional Lorentzian plane symmetric static Ricci solitons
    Hussain, Ibrar
    Tahirullah
    Khan, Suhail
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2019, 28 (16):
  • [30] Curvature Estimates for Four-Dimensional Gradient Steady Ricci Solitons
    Cao, Huai-Dong
    Cui, Xin
    JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (01) : 511 - 525