An Analogical Reasoning Method Based on Multi-task Learning with Relational Clustering

被引:0
|
作者
Li, Shuyi [1 ]
Wu, Shaojuan [1 ]
Zhang, Xiaowang [1 ]
Feng, Zhiyong [1 ]
机构
[1] Tianjin Univ, Coll Intelligence & Comp, Tianjin, Peoples R China
关键词
Analogical Reasoning; Similarity of Relations; Lexical Relation;
D O I
10.1145/3543873.3587333
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Analogical QA task is a challenging natural language processing problem. When two word pairs are similar in their relationships, we refer to their relations as analogous. Although the analogy method based on word embedding is well developed, the analogy reasoning is far beyond this scope. At present, the methods based on pre-trained language models have explored only the tip of the iceberg. In this paper, we proposed a multi-task learning method for analogical QA task. First, we obtain word-pair representations by leveraging the output embeddings of the [MASK] token in the pre-trained language model. The representations are prepared for two tasks. The first task aims to train an analogical classifier by supervised learning. The second task is an auxiliary task based on relation clustering to generate relation pseudo-labels for word pairs and train relation classifier. Our method guides the model to analyze the relation similarity in analogical reasoning without relation labels. The experiments show that our method achieve excellent performance on four analogical reasoning datasets without the help of external corpus and knowledge. In the most difficult data set E-KAR, it has increased by at least 4%.
引用
下载
收藏
页码:144 / 147
页数:4
相关论文
共 50 条
  • [21] Multi-task gradient descent for multi-task learning
    Lu Bai
    Yew-Soon Ong
    Tiantian He
    Abhishek Gupta
    Memetic Computing, 2020, 12 : 355 - 369
  • [22] Deep multi-task learning with relational attention for business success prediction
    Zhao, Jiejie
    Du, Bowen
    Sun, Leilei
    Lv, Weifeng
    Liu, Yanchi
    Xiong, Hui
    PATTERN RECOGNITION, 2021, 110
  • [23] Nuclear mass based on the multi-task learning neural network method
    Ming, Xing-Chen
    Zhang, Hong-Fei
    Xu, Rui-Rui
    Sun, Xiao-Dong
    Tian, Yuan
    Ge, Zhi-Gang
    NUCLEAR SCIENCE AND TECHNIQUES, 2022, 33 (05)
  • [24] Multiple object tracking method based on multi-task joint learning
    Qu Y.
    Li W.-H.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2023, 53 (10): : 2932 - 2941
  • [25] Nuclear mass based on the multi-task learning neural network method
    Xing-Chen Ming
    Hong-Fei Zhang
    Rui-Rui Xu
    Xiao-Dong Sun
    Yuan Tian
    Zhi-Gang Ge
    Nuclear Science and Techniques, 2022, 33
  • [26] Unsupervised domain adaptation: A multi-task learning-based method
    Zhang, Jing
    Li, Wanqing
    Ogunbona, Philip
    KNOWLEDGE-BASED SYSTEMS, 2019, 186
  • [27] A multi-task deep learning based vulnerability severity prediction method
    Shan, Chun
    Zhang, Ziyi
    Zhou, Siyi
    2023 IEEE 12TH INTERNATIONAL CONFERENCE ON CLOUD NETWORKING, CLOUDNET, 2023, : 307 - 315
  • [28] Few-Shot KBQA Method Based on Multi-Task Learning
    Ren, Yuan
    Li, Xutong
    Liu, Xudong
    Zhang, Richong
    2024 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING, IEEE BIGCOMP 2024, 2024, : 226 - 233
  • [29] Multi-Task Learning Tracking Method Based on the Similarity of Dynamic Samples
    Shi Zaifeng
    Sun Cheng
    Cao Qingjie
    Wang Zhe
    Fan Qiangqiang
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (16)
  • [30] Nuclear mass based on the multi-task learning neural network method
    Xing-Chen Ming
    Hong-Fei Zhang
    Rui-Rui Xu
    Xiao-Dong Sun
    Yuan Tian
    Zhi-Gang Ge
    Nuclear Science and Techniques, 2022, (04) : 95 - 102