The Riccati-Bernoulli subsidiary ordinary differential equation method to the coupled Higgs field equation

被引:0
|
作者
Wei, Yi [1 ,2 ]
机构
[1] Jining Med Univ, Sch Med Informat Engn, Rizhao 276826, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2023年 / 31卷 / 11期
关键词
RB method; CHF equation; Backlund transformation; traveling wave solution; NLPDEs; SOLITON-SOLUTIONS; ELEMENT-METHOD; BOUSSINESQ; BREATHER; WAVES;
D O I
10.3934/era.2023342
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By using the Riccati-Bernoulli (RB) subsidiary ordinary differential equation method, we proposed to solve kink-type envelope solitary solutions, periodical wave solutions and exact traveling wave solutions for the coupled Higgs field (CHF) equation. We get many solutions by applying the Backlund transformations of the CHF equation. The proposed method is simple and efficient. In fact, we can deal with some other classes of nonlinear partial differential equations (NLPDEs) in this manner.
引用
收藏
页码:6790 / 6802
页数:13
相关论文
共 50 条
  • [31] AN ORDINARY DIFFERENTIAL EQUATION
    DRIVER, RD
    THOMPSON, RJ
    SASSER, DW
    AMERICAN MATHEMATICAL MONTHLY, 1969, 76 (08): : 948 - &
  • [32] A New Method for Solving Fuzzy Bernoulli Differential Equation
    Babakordi, F.
    Allahviranloo, T.
    JOURNAL OF MATHEMATICAL EXTENSION, 2021, 15 (04)
  • [33] Coupled Higgs field equation and Hamiltonian amplitude equation: Lie classical approach and (G′/G)-expansion method
    SACHIN KUMAR
    K SINGH
    R K GUPTA
    Pramana, 2012, 79 : 41 - 60
  • [34] A Riccati-Bernoulli sub-ODE Method for Some Nonlinear Evolution Equations
    Hassan, S. Z.
    Abdelrahman, Mahmoud A. E.
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2019, 20 (3-4) : 303 - 313
  • [35] Coupled Higgs field equation and Hamiltonian amplitude equation: Lie classical approach and (G′/G)-expansion method
    Kumar, Sachin
    Singh, K.
    Gupta, R. K.
    PRAMANA-JOURNAL OF PHYSICS, 2012, 79 (01): : 41 - 60
  • [36] The Riccati differential equation and a diffusion-type equation
    Suazo, Erwin
    Suslov, Sergei K.
    Vega-Guzman, Jose M.
    NEW YORK JOURNAL OF MATHEMATICS, 2011, 17A : 225 - 244
  • [37] BERNOULLI DIFFERENTIAL-EQUATION
    GLIDEWELL, SR
    GRIMLAND, JF
    BELL, S
    AMERICAN MATHEMATICAL MONTHLY, 1977, 84 (04): : 295 - 296
  • [38] DECOMPOSITION METHOD FOR SOLVING WEAKLY COUPLED ALGEBRAIC RICCATI EQUATION
    WU, CS
    GAJIC, Z
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1992, 15 (02) : 536 - 538
  • [39] ON OPTIMAL CONTROL OF A SWEEPING PROCESS COUPLED WITH AN ORDINARY DIFFERENTIAL EQUATION
    Adam, Lukas
    Outrata, Jiri
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2014, 19 (09): : 2709 - 2738
  • [40] A Novel Method for Solving the Bagley-Torvik Equation as Ordinary Differential Equation
    Xu, Yong
    Liu, Qixian
    Liu, Jike
    Chen, Yanmao
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2019, 14 (08):