Machine Learning-Based Monostatic Microwave Radar for Building Material Classification

被引:0
|
作者
Alsaleh, Nawal [1 ,2 ]
Pomorski, Denis [1 ]
Sebbache, Mohamed [2 ,3 ,4 ]
Haddadi, Kamel [2 ,3 ,4 ]
机构
[1] Univ Lille, CNRS, UMR 9189, CRIStAL, F-59000 Lille, France
[2] Univ Polytehc Hauts de France, CNRS, Univ Lille, Cent Lille,UMR 8520,IEMN, Lille, France
[3] IEMN, UMR 8520, Lille, France
[4] Univ Lille, CNRS 3380, IRCICA, Lille, France
关键词
Microwave nondestructive testing and evaluation (MNDT&E); microwave radar; material characterization; machine learning (ML); classification; MODEL;
D O I
10.1109/I2MTC53148.2023.10176071
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A Microwave nondestructive testing and evaluation (MNDT&E) method combining a broadband continuous wave (CW) monostatic radar and machine learning (ML) algorithms is proposed for building materials classification. A low-power and compact system using commercial solutions is considered. The data collected, i.e. complex reflection coefficient S11, are pre-processed then used as inputs to train support vector machine (SVM) and decision tree classifier (DCT) algorithms. The trained ML models achieved accuracy of 97.88% for DCT and 88.60% for SVM confirming the interest of the method for contactless building material classification.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Investigation of Uncertainty of Deep Learning-based Object Classification on Radar Spectra
    Patel, Kanil
    Beluch, William
    Rambach, Kilian
    Cozma, Adriana-Eliza
    Pfeiffer, Michael
    Yang, Bin
    2021 IEEE RADAR CONFERENCE (RADARCONF21): RADAR ON THE MOVE, 2021,
  • [32] Deep learning-based elderly gender classification using Doppler radar
    Wang Z.C.
    Meng Z.
    Saho K.
    Uemura K.
    Nojiri N.
    Meng L.
    Personal and Ubiquitous Computing, 2022, 26 (04) : 1067 - 1079
  • [33] Machine learning-based new classification for immune infiltration of gliomas
    Yuan, Feng
    Wang, Yingshuai
    Yuan, Lei
    Ye, Lei
    Hu, Yangchun
    Cheng, Hongwei
    Li, Yan
    PLOS ONE, 2024, 19 (10):
  • [34] A review on machine learning-based approaches for Internet traffic classification
    Salman, Ola
    Elhajj, Imad H.
    Kayssi, Ayman
    Chehab, Ali
    ANNALS OF TELECOMMUNICATIONS, 2020, 75 (11-12) : 673 - 710
  • [35] Machine learning-based classification of petrofacies in fine laminated limestones
    Genesis, Gallileu
    Gomes, Igor F.
    Barbosa, Jose Antonio
    De Araujo, Araly Fabiana L.
    Ramos, Germano Mario S.
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2024, 96 (01): : e20230041
  • [36] Machine Learning-Based Elephant Flow Classification on the First Packet
    Jurkiewicz, Piotr
    Kadziolka, Bartosz
    Kantor, Miroslaw
    Domzal, Jerzy
    Wojcik, Robert
    IEEE ACCESS, 2024, 12 : 105744 - 105760
  • [37] Machine Learning-based Detection and Classification of Walnut Fungi Diseases
    Khan, Muhammad Alyas
    Ali, Mushtaq
    Shah, Mohsin
    Mahmood, Toqeer
    Ahmad, Muneer
    Jhanjhi, N. Z.
    Bhuiyan, Mohammad Arif Sobhan
    Jaha, Emad Sami
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2021, 30 (03): : 771 - 785
  • [38] Machine Learning-Based Quantification and Classification of Fibroblasts in Gastrointestinal Cancer
    Zhang, Z.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2024, 120 (02): : E668 - E669
  • [39] Machine learning-based approach for zircon classification and genesis determination
    Zhu Z.
    Zhou F.
    Wang Y.
    Zhou T.
    Hou Z.
    Qiu K.
    Earth Science Frontiers, 2022, 29 (05) : 464 - 475
  • [40] Machine Learning-Based Tomato Fruit Shape Classification System
    Vazquez, Dana V.
    Spetale, Flavio E.
    Nankar, Amol N.
    Grozeva, Stanislava
    Rodriguez, Gustavo R.
    PLANTS-BASEL, 2024, 13 (17):