A Bayesian Approach to Multiple-Output Quantile Regression

被引:1
|
作者
Guggisberg, Michael [1 ]
机构
[1] Inst Def Anal, Alexandria, VA 22305 USA
关键词
Bayesian methods; Multivariate methods; Quantile estimation; CLASS SIZE; MULTIVARIATE QUANTILES; L-1; OPTIMIZATION; SAMPLING METHODS; INFERENCE;
D O I
10.1080/01621459.2022.2075369
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article presents a Bayesian approach to multiple-output quantile regression. The prior can be elicited as ex-ante knowledge of the distance of the tau-Tukey depth contour to the Tukey median, the first prior of its kind. The parametric model is proven to be consistent and a procedure to obtain confidence intervals is proposed. A proposal for nonparametric multiple-output regression is also presented. These results add to the literature of misspecified Bayesian modeling, consistency, and prior elicitation for nonparametric multivariate modeling. The model is applied to the Tennessee Project Steps to Achieving Resilience (STAR) experiment and finds a joint increase in tau-quantile subpopulations for mathematics and reading scores given a decrease in the number of students per teacher. Supplementary materials for this article are available online.
引用
收藏
页码:2736 / 2745
页数:10
相关论文
共 50 条
  • [21] Bayesian quantile regression
    Yu, KM
    Moyeed, RA
    STATISTICS & PROBABILITY LETTERS, 2001, 54 (04) : 437 - 447
  • [22] Simultaneous Linear Quantile Regression: A Semiparametric Bayesian Approach
    Tokdar, Surya T.
    Kadane, Joseph B.
    BAYESIAN ANALYSIS, 2012, 7 (01): : 51 - 71
  • [23] The Expectation-Maximization approach for Bayesian quantile regression
    Zhao, Kaifeng
    Lian, Heng
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 96 : 1 - 11
  • [24] A Bayesian variable selection approach to longitudinal quantile regression
    Kedia, Priya
    Kundu, Damitri
    Das, Kiranmoy
    STATISTICAL METHODS AND APPLICATIONS, 2023, 32 (01): : 149 - 168
  • [25] A Bayesian variable selection approach to longitudinal quantile regression
    Priya Kedia
    Damitri Kundu
    Kiranmoy Das
    Statistical Methods & Applications, 2023, 32 : 149 - 168
  • [26] Multiple-Output Regression with High-Order Structure Information
    Li, Changsheng
    Yang, Lin
    Liu, Qingshan
    Meng, Fanjing
    Dong, Weishan
    Wang, Yu
    Xu, Jingmin
    2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 3868 - 3873
  • [27] Bayesian bridge quantile regression
    Alhamzawi, Rahim
    Algamal, Zakariya Yahya
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2019, 48 (03) : 944 - 956
  • [28] Bayesian bivariate quantile regression
    Waldmann, Elisabeth
    Kneib, Thomas
    STATISTICAL MODELLING, 2015, 15 (04) : 326 - 344
  • [29] Regularized Bayesian quantile regression
    El Adlouni, Salaheddine
    Salaou, Garba
    St-Hilaire, Andre
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (01) : 277 - 293
  • [30] Bayesian Regularized Quantile Regression
    Li, Qing
    Xi, Ruibin
    Lin, Nan
    BAYESIAN ANALYSIS, 2010, 5 (03): : 533 - 556