Micromechanical fiber-matrix interface model for in-plane shear in unidirectional laminae

被引:3
|
作者
Vignoli, Lucas L. [1 ]
Savi, Marcelo A. [2 ]
Pacheco, Pedro M. C. L. [3 ]
Kalamkarov, Alexander L. [4 ]
机构
[1] Univ Fed Rio de Janeiro, Ctr Technol & Applicat Composite Mat, Dept Mech Engn, Macae, RJ, Brazil
[2] Univ Fed Rio de Janeiro, Dept Mech Engn, Ctr Nonlinear Mech, COPPE, BR-21941972 Rio De Janeiro, Brazil
[3] CEFET RJ, Ctr Fed Educ Tecnol Celso Suckow da Fonseca, Dept Mech Engn, BR-20271110 Rio De Janeiro, RJ, Brazil
[4] Dalhousie Univ, Dept Mech Engn, Halifax, NS, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Micromechanics of composites; in-plane shear; fiber-matrix interface; analytical modeling; damage propagation; nonlinear behavior; REINFORCED COMPOSITES; MECHANICAL-PROPERTIES; MULTISCALE MODEL; INTERPHASE; DAMAGE; BEHAVIOR; SHAPE;
D O I
10.1080/15376494.2023.2259903
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A novel analytical model is proposed for the in-plane shear response of unidirectional composites on account of fiber-matrix interface. The fiber-matrix interface influences the stiffness and induces nonlinear phenomena, playing a fundamental role in the damage onset and propagation. The interface consists of three zones: fiber-transition, core, and matrix-transition. The transition zones are assumed to have zero thicknesses, while the core zone is a layer with finite thickness. Fiber-transition zone is characterized by a nonlinear damage behavior. The analytical model is verified by comparing with finite element simulations and experimental data, indicating adequate description of the complex phenomena under study.
引用
收藏
页码:8488 / 8500
页数:13
相关论文
共 50 条