SIMPSON-LIKE INEQUALITIES FOR TWICE DIFFERENTIABLE (s,P)-CONVEX MAPPINGS INVOLVING WITH AB-FRACTIONAL INTEGRALS AND THEIR APPLICATIONS

被引:10
|
作者
Yuan, Xiaoman [1 ]
Xu, Lei [1 ]
Du, Tingsong [1 ,2 ]
机构
[1] China Three Gorges Univ, Three Gorges Math Res Ctr, Yichang 443002, Peoples R China
[2] China Three Gorges Univ, Coll Sci, Dept Math, Yichang 443002, Peoples R China
关键词
Simpson-type Integral Inequalities; (s; P)-convex Mappings; AB-fractional Integrals; CONVEX-FUNCTIONS; OPERATORS;
D O I
10.1142/S0218348X2350024X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
First, we establish the parametrized integral identity and its improved version via Atangana-Baleanu (AB) fractional integrals. For the focus of this paper, we utilize the resulting identities to derive a series of Simpson-like integral inequalities for mappings whose second-order derivatives belong to the (s,P)-convexity and (s,P)-concavity in absolute value. And a couple of outcomes, concerning the Simpson-like quadrature formulas, the q-digamma functions and the modified Bessel functions, are introduced as applications separately in the end.
引用
收藏
页数:31
相关论文
共 50 条
  • [41] Generalized Fractional Hermite-Hadamard Inequalities for Twice Differentiable s-Convex Functions
    Noor, Muhammad Aslam
    Cristescu, Gabriela
    Awan, Muhammad Uzair
    FILOMAT, 2015, 29 (04) : 807 - 815
  • [42] Some New Inequalities of Simpson's Type for s-convex Functions via Fractional Integrals
    Chen, Jianhua
    Huang, Xianjiu
    FILOMAT, 2017, 31 (15) : 4989 - 4997
  • [43] Some Parameterized Quantum Simpson's and Quantum Newton's Integral Inequalities via Quantum Differentiable Convex Mappings
    You, Xue Xiao
    Ali, Muhammad Aamir
    Budak, Hueseyin
    Vivas-Cortez, Miguel
    Qaisar, Shahid
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [44] Hermite-Hadamard type inequalities via k-fractional integrals concerning differentiable generalized η-convex mappings
    Kashuri, Artion
    Liko, Rozana
    ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2020, 24 (01): : 19 - 35
  • [45] Simpson's type inequalities for η-convex functions via k-Riemann-Liouville fractional integrals
    Kermausuor, Seth
    ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2019, 23 (02): : 193 - 200
  • [46] SOME INTEGRAL INEQUALITIES OF (s, p)-CONVEX FUNCTIONS VIA FRACTIONAL INTEGRALS
    Mehreen, N.
    Anwar, M.
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2021, 14 (03): : 411 - 435
  • [47] NEW GENERALIZATION INVOLVING CONVEX FUNCTIONS VIA (h)over-bar-DISCRETE AB-FRACTIONAL SUMS AND THEIR APPLICATIONS IN FRACTIONAL DIFFERENCE EQUATIONS
    Rashid, Saima
    Khalid, Aasma
    Karaca, Yeliz
    Hammouch, Zakia
    Chu, Yu-Ming
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (05)
  • [48] Some parameterized integral inequalities for p-convex mappings via the right Katugampola fractional integrals
    Hu, Gou
    Lei, Hui
    Du, Tingsong
    AIMS MATHEMATICS, 2020, 5 (02): : 1425 - 1445
  • [49] FRACTIONAL HERMITE-HADAMARD INEQUALITIES FOR TWICE DIFFERENTIABLE GEOMETRIC-ARITHMETICALLY s-CONVEX FUNCTIONS
    Iqbal, Sajid
    Aamir, Muhammad
    Samraiz, Muhammad
    Kashuri, Artion
    Asif, Muhammad
    JOURNAL OF MATHEMATICAL ANALYSIS, 2020, 11 (05): : 13 - 31
  • [50] (q1, q2)-Trapezium-Like Inequalities Involving Twice Differentiable Generalized m-Convex Functions and Applications
    Awan, Muhammad Uzair
    Javed, Muhammad Zakria
    Slimane, Ibrahim
    Kashuri, Artion
    Cesarano, Clemente
    Nonlaopon, Kamsing
    FRACTAL AND FRACTIONAL, 2022, 6 (08)