Machine learning-based new approach to films review

被引:3
|
作者
Jassim, Mustafa Abdalrassual [1 ,2 ,3 ]
Abd, Dhafar Hamed [4 ]
Omri, Mohamed Nazih [1 ]
机构
[1] Univ Sousse, MARS Res Lab, Sousse, Tunisia
[2] Univ Monastir, Monastir Fac Sci, Monastir, Tunisia
[3] Al Muthanna Univ, Samawah, Iraq
[4] Al Maaref Univ Coll, Dept Comp Sci, Alanbar, Iraq
关键词
Sentiment analysis; Movie review; Machine learning; Word selection; Decision-making; Text analysis; Data science; SENTIMENT ANALYSIS; FUZZY TOPSIS; SELECTION;
D O I
10.1007/s13278-023-01042-7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The main purpose of Sentiment Analysis (SA) is to derive useful insights from large amounts of unstructured data compiled from various sources. This analysis helps to interpret and classify textual data using different techniques applied in machine learning (ML) models. In this paper, we compared simple and ensemble ML methods as classifiers for SA: Random Forest, K-Nearest Neighbor, Artificial Neural Network, Gradient Boosting, Support Vector Machine (SVM), AdaBoost, Extreme Gradient Boosting, Decision Tree, Light GBM, Stochastic Gradient Descent and Bagging. For this, we considered a test set database of 50,000 movie reviews, of which 25,000 were rated positive and 25,000 negatives. We have chosen 20,000 words that have an impact on the feelings of the documents. This work aims to propose a new rating prediction approach based on a textual customer review. We consider term frequency characteristics and term frequency-inverse document frequency from the large-scale and serial trials to compare the results obtained by various classifiers using feature extraction techniques. For the decision phase, we applied the Fuzzy Decision by Opinion Score Method, one of the most recent methods for multi-criteria decision-making. To evaluate and quantify the performance of the different ML methods we considered, we apply six standard measures namely precision, accuracy, recall, F-score, AUC, and Kappa-measure. The results we obtained, at the end of the experimental work that we conducted, indicated that the SVM classier is the best with 88,333% as a precision rate followed by the FDOSM method, with 0.800 for the same measurement.
引用
下载
收藏
页数:17
相关论文
共 50 条
  • [31] Machine learning-based approach for predicting low birth weight
    Amene Ranjbar
    Farideh Montazeri
    Mohammadsadegh Vahidi Farashah
    Vahid Mehrnoush
    Fatemeh Darsareh
    Nasibeh Roozbeh
    BMC Pregnancy and Childbirth, 23
  • [32] A Machine Learning-Based Approach to Quantify ENSO Sources of Predictability
    Colfescu, Ioana
    Christensen, Hannah
    Gagne, David John
    GEOPHYSICAL RESEARCH LETTERS, 2024, 51 (13)
  • [33] Machine learning-based approach for prediction of ion channels and their subclasses
    Singh, Anuj
    Tiwari, Arvind Kumar
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2023, 124 (01) : 72 - 88
  • [34] Machine Learning-Based Approach to Predict Intrauterine Growth Restriction
    Taeidi, Elham
    Ranjbar, Amene
    Montazeri, Farideh
    Mehrnoush, Vahid
    Darsareh, Fatemeh
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2023, 15 (07)
  • [35] Machine learning-based approach for identifying mental workload of pilots
    Mohanavelu, K.
    Poonguzhali, S.
    Janani, A.
    Vinutha, S.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 75
  • [36] Auto Machine Learning-Based Approach for Source Printer Identification
    Phu-Qui Vo
    Nhan Tam Dang
    Phu Nguyen, Q.
    An Mai
    Nguyen, Loan T. T.
    Quoc-Thong Nguyen
    Ngoc-Thanh Nguyen
    RECENT CHALLENGES IN INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2022, 2022, 1716 : 668 - 680
  • [37] Predictive Maintenance in Building Facilities: A Machine Learning-Based Approach
    Bouabdallaoui, Yassine
    Lafhaj, Zoubeir
    Yim, Pascal
    Ducoulombier, Laure
    Bennadji, Belkacem
    SENSORS, 2021, 21 (04) : 1 - 15
  • [38] A Machine Learning-Based Approach for the Design of Lower Limb Exoskeleton
    Varma, V. S.
    Yogeshwar Rao, R.
    Vundavilli, P. R.
    Pandit, M. K.
    Budarapu, P. R.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2022, 19 (08)
  • [39] A Machine Learning-Based Approach to Prediction of Acute Coronary Syndrome
    Park, Ji Young
    Noh, Yung-Kyun
    Choi, Byoung Geol
    Rha, Seung-Woon
    Kim, Kee Eung
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2015, 65 (17) : S6 - S6
  • [40] Lightweight Machine Learning-Based Approach for Supervision of Fitness Workout
    Depari, A.
    Ferrari, P.
    Flammini, A.
    Rinaldi, S.
    Sisinni, E.
    2019 IEEE SENSORS APPLICATIONS SYMPOSIUM (SAS), 2019,