Sequential Inverse Optimal Control of Discrete-Time Systems

被引:1
|
作者
Cao, Sheng [1 ]
Luo, Zhiwei [1 ]
Quan, Changqin [1 ]
机构
[1] Kobe Univ, Grad Sch Syst Informat, Kobe 6578501, Japan
关键词
Discrete-time systems; Costs; Simulation; Aerospace electronics; Real-time systems; Noise measurement; Convergence; Inverse optimal control; promised calculation step; sequential calculation;
D O I
10.1109/JAS.2023.123762
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a novel sequential inverse optimal control (SIOC) method for discrete-time systems, which calculates the unknown weight vectors of the cost function in real time using the input and output of an optimally controlled discrete-time system. The proposed method overcomes the limitations of previous approaches by eliminating the need for the invertible Jacobian assumption. It calculates the possible-solution spaces and their intersections sequentially until the dimension of the intersection space decreases to one. The remaining one-dimensional vector of the possible-solution space's intersection represents the SIOC solution. The paper presents clear conditions for convergence and addresses the issue of noisy data by clarifying the conditions for the singular values of the matrices that relate to the possible-solution space. The effectiveness of the proposed method is demonstrated through simulation results.
引用
收藏
页码:608 / 621
页数:14
相关论文
共 50 条
  • [41] Statistically consistent inverse optimal control for discrete-time indefinite linear-quadratic systems☆
    Zhang, Han
    Ringh, Axel
    [J]. AUTOMATICA, 2024, 166
  • [42] Robust inverse optimal control for discrete-time nonlinear system stabilization
    Ornelas-Tellez, Fernando
    Sanchez, Edgar N.
    Loukianov, Alexander G.
    Jesus Rico, J.
    [J]. EUROPEAN JOURNAL OF CONTROL, 2014, 20 (01) : 38 - 44
  • [43] Discrete-Time Decentralized Inverse Optimal Neural Control for a Shrimp Robot
    Lopez-Franco, Michel
    Sanchez, Edgar N.
    Alanis, Alma Y.
    Arana-Daniel, Nancy
    [J]. 2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 1183 - 1188
  • [44] Passivity analysis of discrete-time inverse optimal control for trajectory tracking
    Lastire, Enrique A.
    Sanchez, Edgar N.
    Alanis, Alma Y.
    Ornelas-Tellez, Fernando
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2016, 353 (13): : 3192 - 3206
  • [45] Inverse Optimal Control with Discount Factor for Continuous and Discrete-Time Control-Affine Systems and Reinforcement Learning
    Rodrigues, Luis
    [J]. 2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 5783 - 5788
  • [46] Optimal switching time control of discrete-time switched autonomous systems
    Shandong Provincial Key Laboratory for Novel Distributed Computer Software Technology, School of Information Science and Engineering, China
    不详
    250014, China
    不详
    210096, China
    [J]. Int. J. Innov. Comput. Inf. Control, 6 (2043-2050):
  • [47] OPTIMAL SWITCHING TIME CONTROL OF DISCRETE-TIME SWITCHED AUTONOMOUS SYSTEMS
    Li, Shengtao
    Liu, Xiaomei
    Tan, Yanyan
    Ding, Yanhui
    Zhang, Kanjian
    [J]. INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2015, 11 (06): : 2043 - 2050
  • [48] Optimal Finite Time Control for Discrete-Time Stochastic Dynamical Systems
    Lee, Junsoo
    Haddad, Wassim M.
    Lanchares, Manuel
    [J]. 2022 AMERICAN CONTROL CONFERENCE, ACC, 2022, : 3500 - 3505
  • [49] OPTIMAL CONTROL OF DISCRETE-TIME SYSTEMS WITH TIME-LAG CONTROLS
    WANG, PKC
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1975, AC20 (03) : 425 - 426
  • [50] Indefinite LQ optimal control for discrete-time uncertain systems
    Chen, Yuefen
    Zhu, Yuanguo
    [J]. SOFT COMPUTING, 2020, 24 (01) : 267 - 279