Overall survival prediction models for gynecological endometrioid adenocarcinoma with squamous differentiation (GE-ASqD) using machine-learning algorithms

被引:0
|
作者
Liu, Xiangmei [1 ,3 ]
Jin, Shuai [2 ]
Zi, Dan [3 ,4 ]
机构
[1] Guizhou Med Univ, Guiyang, Peoples R China
[2] Guizhou Med Univ, Sch Big Hlth, Guiyang, Peoples R China
[3] Guizhou Prov Peoples Hosp, Dept Gynecol & Obstet, Guiyang, Peoples R China
[4] Guizhou Med Univ, Affiliated Peoples Hosp, Dept Gynecol & Obstet, Guiyang, Peoples R China
关键词
LYMPH-NODE METASTASIS; OVARIAN-CANCER; CARCINOMA; DISPARITIES; GRADE;
D O I
10.1038/s41598-023-33748-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The actual 5-year survival rates for Gynecological Endometrioid Adenocarcinoma with Squamous Differentiation (GE-ASqD) are rarely reported. The purpose of this study was to evaluate how histological subtypes affected long-term survivors of GE-ASqD (> 5 years). We conducted a retrospective analysis of patients diagnosed GE-ASqD from the Surveillance, Epidemiology, and End Results database (2004-2015). In order to conduct the studies, we employed the chi-square test, univariate cox regression, and multivariate cox proportional hazards model. A total of 1131 patients with GE-ASqD were included in the survival study from 2004 to 2015 after applying the inclusion and exclusion criteria and the sample randomly split into a training set and a test set at a ratio of 7:3. Five machine learning algorithms were trained based on nine clinical variables to predict the 5-year overall survival. The AUC of the training group for the LR, Decision Tree, forest, Gbdt, and gbm algorithms were 0.809, 0.336, 0.841, 0.823, and 0.856 respectively. The AUC of the testing group was 0.779, 0.738, 0.753, 0.767 and 0.734, respectively. The calibration curves confirmed good performance of the five machine learning algorithms. Finally, five algorithms were combined to create a machine learning model that forecasts the 5-year overall survival rate of patients with GE-ASqD.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Prediction of chronic damage in systemic lupus erythematosus by using machine-learning models
    Ceccarelli, Fulvia
    Sciandrone, Marco
    Perricone, Carlo
    Galvan, Giulio
    Morelli, Francesco
    Vicente, Luis Nunes
    Leccese, Ilaria
    Massaro, Laura
    Cipriano, Enrica
    Spinelli, Francesca Romana
    Alessandri, Cristiano
    Valesini, Guido
    Conti, Fabrizio
    PLOS ONE, 2017, 12 (03):
  • [22] Prediction of 24-Hour Urinary Sodium Excretion Using Machine-Learning Algorithms
    Hamaya, Rikuta
    Wang, Molin
    Juraschek, Stephen P.
    Mukamal, Kenneth J.
    Manson, JoAnn E.
    Tobias, Deirdre K.
    Sun, Qi
    Curhan, Gary C.
    Willett, Walter C.
    Rimm, Eric B.
    Cook, Nancy R.
    JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2024, 13 (10):
  • [23] PREDICTION OF CHRONIC DAMAGE IN SYSTEMIC LUPUS ERYTHEMATOSUS BY USING MACHINE-LEARNING MODELS
    Ceccarelli, F.
    Sciandrone, M.
    Perricone, C.
    Galvan, G.
    Morelli, F.
    Vicente, L. N.
    Leccese, I.
    Massaro, L.
    Cipriano, E.
    Spinelli, F. R.
    Alessandri, C.
    Valesini, G.
    Conti, F.
    ANNALS OF THE RHEUMATIC DISEASES, 2017, 76 : 1449 - 1449
  • [24] Prediction of State-to-State Dissociation Rate Coefficients Using Machine-Learning Algorithms
    Maksudova, Z. M.
    Savelev, A. S.
    Kustova, E. V.
    VESTNIK ST PETERSBURG UNIVERSITY-MATHEMATICS, 2024, 57 (04) : 584 - 592
  • [25] High blood pressure prediction based on AAA++ using machine-learning algorithms
    Nimmala, Satyanarayana
    Ramadevi, Y.
    Sahith, R.
    Cheruku, Ramalingaswamy
    COGENT ENGINEERING, 2018, 5 (01): : 1 - 12
  • [26] Water quality of Danube Delta systems: ecological status and prediction using machine-learning algorithms
    Stoica, C.
    Camejo, J.
    Banciu, A.
    Nita-Lazar, M.
    Paun, I.
    Cristofor, S.
    Pacheco, O. R.
    Guevara, M.
    WATER SCIENCE AND TECHNOLOGY, 2016, 73 (10) : 2413 - 2421
  • [27] Credit-Risk Prediction Model Using Hybrid Deep - Machine-Learning Based Algorithms
    Melese, Tamiru
    Berhane, Tesfahun
    Mohammed, Abdu
    Walelgn, Assaye
    Scientific Programming, 2023, 2023
  • [28] Creating probabilistic 3D models of lithofluid facies using machine-learning algorithms
    Keynejad, Saba
    Sbar, Marc L.
    Johnson, Roy A.
    INTERPRETATION-A JOURNAL OF SUBSURFACE CHARACTERIZATION, 2020, 8 (04): : T701 - T714
  • [29] Survival prediction and treatment optimization of multiple myeloma patients using machine-learning models based on clinical and gene expression data
    Mosquera Orgueira, Adrian
    Gonzalez Perez, Marta Sonia
    Diaz Arias, Jose Angel
    Antelo Rodriguez, Beatriz
    Alonso Vence, Natalia
    Bendana Lopez, Angeles
    Abuin Blanco, Aitor
    Bao Perez, Laura
    Peleteiro Raindo, Andres
    Cid Lopez, Miguel
    Perez Encinas, Manuel Mateo
    Bello Lopez, Jose Luis
    Mateos Manteca, Maria Victoria
    LEUKEMIA, 2021, 35 (10) : 2924 - 2935
  • [30] Survival prediction and treatment optimization of multiple myeloma patients using machine-learning models based on clinical and gene expression data
    Adrián Mosquera Orgueira
    Marta Sonia González Pérez
    José Ángel Díaz Arias
    Beatriz Antelo Rodríguez
    Natalia Alonso Vence
    Ángeles Bendaña López
    Aitor Abuín Blanco
    Laura Bao Pérez
    Andrés Peleteiro Raíndo
    Miguel Cid López
    Manuel Mateo Pérez Encinas
    José Luis Bello López
    Maria Victoria Mateos Manteca
    Leukemia, 2021, 35 : 2924 - 2935