ON r-JACOBSTHAL AND r-JACOBSTHAL-LUCAS NUMBERS

被引:0
|
作者
Bilgici, Goksal [1 ]
Brod, Dorota [2 ]
机构
[1] Kastamonu Univ, Elementary Math Educ, TR-37200 Kastamonu, Turkiye
[2] Rzeszow Univ Technol, Fac Math & Appl Phys, Dept Discrete Math, Rzeszow, Poland
关键词
r-Jacobsthal numbers; r-Jacobsthal-Lucas numbers; Binet formula;
D O I
10.2478/amsil-2023-0001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently, Br & oacute;d introduced a new Jacobsthal-type sequence which is called r-Jacobsthal sequence in current study. After defining the appropriate r-Jacobsthal-Lucas sequence for the r-Jacobsthal sequence, we obtain some properties of these two sequences. For simpler results, we define two new sequences and examine their properties, too. Finally, we generalize some well-known identities.
引用
收藏
页码:16 / 31
页数:16
相关论文
共 50 条
  • [31] Bivariate Jacobsthal and Jacobsthal Lucas polynomial sequences
    Uygun, Sukran
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2020, 21 (03): : 176 - 185
  • [32] On Generalized Jacobsthal and Jacobsthal-Lucas polynomials
    Catarino, P.
    Morgado, M. L.
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2016, 24 (03): : 61 - 78
  • [33] Split Jacobsthal and Jacobsthal-Lucas Quaternions
    Yagmur, Tulay
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2019, 10 (03): : 429 - 438
  • [34] A NEW FAMILIES OF GAUSS k-JACOBSTHAL NUMBERS AND GAUSS k-JACOBSTHAL-LUCAS NUMBERS AND THEIR POLYNOMIALS
    Ozkan, Engin
    Tastan, Merve
    JOURNAL OF SCIENCE AND ARTS, 2020, (04): : 893 - 908
  • [35] GENERALIZED IDENTITIES INVOLVING COMMON FACTORS OF GENERALIZED FIBONACCI, JACOBSTHAL AND JACOBSTHAL-LUCAS NUMBERS
    Panwar, Yashwant K.
    Singh, Bijendra
    Gupta, V. K.
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2013, 3 (01): : 53 - 59
  • [36] Integration sequences of Jacobsthal and Jacobsthal-Lucas polynomials
    Filipponi, P
    Horadam, AF
    APPLICATIONS OF FIBONACCI NUMBERS, VOL 8, 1999, : 129 - 139
  • [37] On the k-Jacobsthal-Lucas Numbers by Matrix Methods
    Srisawat, Somnuk
    Sriprad, Wanna
    Sthityanak, Oam
    2015 INTERNATIONAL CONFERENCE ON SCIENCE AND TECHNOLOGY (TICST), 2015, : 445 - 448
  • [38] Some identities for Jacobsthal and Jacobsthal-Lucas numbers satisfying higher order recurrence relations
    Cook, Charles K.
    Bacon, Michael R.
    ANNALES MATHEMATICAE ET INFORMATICAE, 2013, 41 : 27 - 39
  • [39] Derivative sequences of Jacobsthal and Jacobsthal-Lucas polynomials
    Horadam, AF
    Filipponi, P
    FIBONACCI QUARTERLY, 1997, 35 (04): : 352 - 357
  • [40] The Combinatorial Representation of Jacobsthal and Jacobsthal Lucas Matrix Sequences
    Uygun, S.
    ARS COMBINATORIA, 2017, 135 : 83 - 92