Mapping dead understorey Buxus hyrcana Pojark using Sentinel-2 and Sentinel-1 data

被引:2
|
作者
Saba, Fatemeh [1 ]
Latifi, Hooman [1 ,2 ]
Zoej, Mohammad Javad Valadan [1 ]
Esmaili, Rohollah [3 ]
机构
[1] KN Toosi Univ Technol, Fac Geodesy & Geomat, Tehran 158754416, Iran
[2] Univ Wurzburg, Dept Remote Sensing, D-97070 Wurzburg, Germany
[3] Prov Dept Environm Mazandaran, Sari, Iran
来源
FORESTRY | 2023年 / 96卷 / 02期
基金
美国国家科学基金会;
关键词
MOTH CYDALIMA-PERSPECTALIS; SIBERIAN SILKMOTH OUTBREAK; SUPPORT VECTOR MACHINES; VEGETATION INDEXES; SPRUCE BUDWORM; CHLOROPHYLL CONTENT; FEATURE-SELECTION; REMOTE ESTIMATION; NORTHERN FORESTS; LEAF;
D O I
10.1093/forestry/cpac049
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
The Hyrcanian Forests comprise a continuous 800-km belt of mostly deciduous broadleaf forests and are considered as Iran's most important vegetation region in terms of density, canopy cover and species diversity. One of the few evergreen species of the Hyrcanian Forests is the box tree (Buxus), which is seriously threatened by box blight disease and box tree moth outbreaks. Therefore, information on the spatial distribution of intact and infested box trees is essential for recovery monitoring, control treatment and management. To address this critical knowledge gap, we integrated a genetic algorithm (GA) with a support vector machine (SVM) ensemble classification based on the combination of leaf-off optical Sentinel-2 and radar Sentinel-1 data to map the spatial distribution of box tree mortality. We additionally considered the overstorey species composition to account for a potential impact of overstory stand composition on the spectral signature of understorey defoliation. We consequently defined target classes based on the combination of dominant overstorey trees (using two measures including the relative frequency and the diameter at breast height) and two defoliation levels of box trees (including dead and healthy box trees). Our classification workflow applied a GA to simultaneously derive optimal vegetation indices (VIs) and tuning parameters of the SVM. Then the distribution of box tree defoliation was mapped by an SVM ensemble with bagging using GA-optimized VIs and radar data. The GA results revealed that normalized difference vegetation index, red edge normalized difference vegetation index and green normalized difference vegetation index were appropriate for box tree defoliation mapping. An additional comparison of GA-SVM (using GA-optimized VIs and tuning parameters) with a simple SVM (using all VIs and user-based tuning parameters) showed that our suggested workflow performs notably better than the simple SVM (overall accuracy of 0.79 vs 0.74). Incorporating Sentinel-1 data to GA-SVM, marginally improved the performance of the model (overall accuracy: 0.80). The SVM ensemble model using Sentinel-2 and -1 data yielded high accuracies and low uncertainties in mapping of box tree defoliation. The results showed that infested box trees were mostly located at low elevations, low slope and facing north. We conclude that mortality of evergreen understorey tree species can be mapped with good accuracies using freely available satellite data if a suitable work-flow is applied.
引用
收藏
页码:228 / 248
页数:21
相关论文
共 50 条
  • [11] Fast Urban Land Cover Mapping Exploiting Sentinel-1 and Sentinel-2 Data
    Petrushevsky, Naomi
    Manzoni, Marco
    Monti-Guarnieri, Andrea
    [J]. REMOTE SENSING, 2022, 14 (01)
  • [12] Seasonal evaluation and mapping of aboveground biomass in natural rangelands using Sentinel-1 and Sentinel-2 data
    Monde Rapiya
    Abel Ramoelo
    Wayne Truter
    [J]. Environmental Monitoring and Assessment, 2023, 195
  • [13] Fusion of Sentinel-1 and Sentinel-2 data in mapping the impervious surfaces at city scale
    Binita Shrestha
    Sajjad Ahmad
    Haroon Stephen
    [J]. Environmental Monitoring and Assessment, 2021, 193
  • [14] Seasonal evaluation and mapping of aboveground biomass in natural rangelands using Sentinel-1 and Sentinel-2 data
    Rapiya, Monde
    Ramoelo, Abel
    Truter, Wayne
    [J]. ENVIRONMENTAL MONITORING AND ASSESSMENT, 2023, 195 (12)
  • [15] An Operational Framework for Mapping Irrigated Areas at Plot Scale Using Sentinel-1 and Sentinel-2 Data
    Bazzi, Hassan
    Baghdadi, Nicolas
    Amin, Ghaith
    Fayad, Ibrahim
    Zribi, Mehrez
    Demarez, Valerie
    Belhouchette, Hatem
    [J]. REMOTE SENSING, 2021, 13 (13)
  • [16] Integration of Sentinel-1 and Sentinel-2 Data for Land Cover Mapping Using W-Net
    Gargiulo, Massimiliano
    Dell'Aglio, Domenico A. G.
    Iodice, Antonio
    Riccio, Daniele
    Ruello, Giuseppe
    [J]. SENSORS, 2020, 20 (10)
  • [17] EVALUATION OF BURNT BUILDING DAMAGE USING SENTINEL-1 AND SENTINEL-2 DATA
    Jung, Jungkyo
    Yun, Sang-Ho
    Xu, Jeri
    Xie, Boyi
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 6875 - 6878
  • [18] OPERATIVE MAPPING OF IRRIGATED AREAS USING SENTINEL-1 AND SENTINEL-2 TIME SERIES
    Bazzi, Hassan
    Baghdadi, Nicolas
    Zribi, Mehrez
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 5796 - 5799
  • [19] WETLAND CLASSIFICATION WITH SWIN TRANSFORMER USING SENTINEL-1 AND SENTINEL-2 DATA
    Jamali, Ali
    Mohammadimanesh, Fariba
    Mahdianpari, Masoud
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 6213 - 6216
  • [20] PADDY FIELD MAPPING IN EASTERN PART OF ASIA USING SENTINEL-1 AND SENTINEL-2
    Inoue, Shimpei
    Ito, Akihiko
    Yonezawa, Chinatsu
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 5171 - 5174