Microstructure evolution of Solid Oxide Fuel Cell anodes characterized by persistent homology

被引:6
|
作者
Pawlowski, Piotr [1 ]
Buchaniec, Szymon [1 ]
Prokop, Tomasz [1 ]
Iwai, Hiroshi [2 ]
Brus, Grzegorz [1 ]
机构
[1] AGH Univ Sci & Technol, Mickiewicz Ave 30, PL-30059 Krakow, Poland
[2] Kyoto Univ, Nishikyo Ku, Kyoto 6158540, Japan
关键词
Fuel cell; Hydrogen; Microstructure; Persistent homology; Persistent diagrams; Machine learning; TOPOLOGICAL PERSISTENCE; LOCAL EVOLUTION; STACK;
D O I
10.1016/j.egyai.2023.100256
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Uncovering microstructure evolution mechanisms that accompany the long-term operation of solid oxide fuel cells is a fundamental challenge in designing a more durable energy system for the future. To date, the study of fuel cell stack degradation has focused mainly on electrochemical performance and, more rarely, on averaged microstructural parameters. Here we show an alternative approach in which an evolution of three-dimensional microstructural features is studied using electron tomography coupled with topological data analysis. The latter produces persistent diagrams of microstructure before and after long-term operation of electrodes. Those diagrams unveil a new insight into the degradation process of three involved phases: Nickel, pores, and yttrium-stabilized zirconium.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] A modeling study of porous composite microstructures for solid oxide fuel cell anodes
    Nishida, Yasutaka
    Itoh, Satoshi
    ELECTROCHIMICA ACTA, 2011, 56 (07) : 2792 - 2800
  • [32] Simulation of coarsening in three-phase solid oxide fuel cell anodes
    Chen, Hsun-Yi
    Yu, Hui-Chia
    Cronin, J. Scott
    Wilson, James R.
    Barnett, Scott A.
    Thornton, Katsuyo
    JOURNAL OF POWER SOURCES, 2011, 196 (03) : 1333 - 1337
  • [33] A comprehensive simulation of gas concentration impedance for solid oxide fuel cell anodes
    Fadaei, M.
    Mohammadi, R.
    ENERGY CONVERSION AND MANAGEMENT, 2015, 106 : 93 - 100
  • [34] In situ Fourier transform infrared emission of solid oxide fuel cell anodes
    Pomfret, Michael B.
    Steinhurst, Daniel A.
    Owrutsky, Jeffrey C.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [35] Influence of sealing material on nickel/YSZ solid oxide fuel cell anodes
    Larsen, PH
    Primdahl, S
    Mogensen, M
    HIGH TEMPERATURE ELECTROCHEMISTRY: CERAMICS AND METALS, 1996, : 331 - 338
  • [36] Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation
    Juan Carlos Ruiz-Morales
    Jesús Canales-Vázquez
    Cristian Savaniu
    David Marrero-López
    Wuzong Zhou
    John T. S. Irvine
    Nature, 2006, 439 : 568 - 571
  • [37] Anodes for direct oxidation of dry hydrocarbons in a solid-oxide fuel cell
    Gorte, RJ
    Park, S
    Vohs, JM
    Wang, CH
    ADVANCED MATERIALS, 2000, 12 (19) : 1465 - 1469
  • [38] METAL ZIRCONIA INTERFACIAL REACTIONS IN SOLID OXIDE FUEL-CELL ANODES
    BARDI, U
    ROSS, PN
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1987, 134 (8B) : C414 - C414
  • [39] Mechanical properties of micro-tubular solid oxide fuel cell anodes
    Roy, Brycen R.
    Sammes, Nigel M.
    Suzuki, Toshio
    Funahashi, Yoshihiro
    Awano, Masanobu
    JOURNAL OF POWER SOURCES, 2009, 188 (01) : 220 - 224
  • [40] Synthesize and characterization of nanocomposite anodes for low temperature solid oxide fuel cell
    Abbas, Ghazanfar
    Raza, Rizwan
    Khan, M. Ajmal
    Ahmad, Imran
    Chaudhry, M. Ashraf
    Sherazi, Tauqir A.
    Mohsin, Munazza
    Ahmad, Mukhtar
    Zhu, Bin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (01) : 891 - 897