Unmanned Aerial System-Based Wheat Biomass Estimation Using Multispectral, Structural and Meteorological Data

被引:5
|
作者
Zhang, Jianyong [1 ]
Zhao, Yanling [2 ]
Hu, Zhenqi [3 ]
Xiao, Wu [4 ]
机构
[1] Chengdu Univ Technol, Coll Earth Sci, Chengdu 610059, Peoples R China
[2] China Univ Min & Technol Beijing, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R China
[3] China Univ Min & Technol, Sch Environm & Spatial Informat, Xuzhou 221116, Peoples R China
[4] Zhejiang Univ, Dept Land Management, Hangzhou 310058, Peoples R China
来源
AGRICULTURE-BASEL | 2023年 / 13卷 / 08期
关键词
biomass estimation; unmanned aircraft system; vegetation index; canopy height model; growing degree days; ABOVEGROUND BIOMASS; VEGETATION INDEXES; WINTER-WHEAT; LEAF-AREA; CROPLAND; MAIZE; YIELD; LAND; RGB;
D O I
10.3390/agriculture13081621
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Rapid estimation of above-ground biomass (AGB) with high accuracy is essential for monitoring crop growth status and predicting crop yield. Recently, remote sensing techniques using unmanned aerial systems (UASs) have exhibited great potential in obtaining structural information about crops and identifying spatial heterogeneity. However, methods of data fusion of different factors still need to be explored in order to enhance the accuracy of their estimates. Therefore, the objective of this study was to investigate the combined metrics of different variables (spectral, structural and meteorological factors) for AGB estimation of wheat using UAS multispectral data. UAS images were captured on two selected growing dates at a typical reclaimed cropland in the North China Plain. The spectral response was determined using the highly correlated vegetation index (VI). A structural metric, the canopy height model (CHM), was produced using UAS-based multispectral images. The measure of growing degree days (GDD) was selected as a meteorological proxy. Subsequently, a structurally-meteorologically weighted canopy spectral response metric (SM-CSRM) was derived by the pixel-level fusion of CHM, GDD and VI. Both correlation coefficient analysis and simple function fitting were implemented to explore the highest correlation between the measured AGB and each proposed metric. The optimal regression model was built for AGB prediction using leave-one-out cross-validation. The results showed that the proposed SM-CSRM generally improved the correlation between wheat AGB and various VIs and can be used for estimating the wheat AGB. Specifically, the combination of MERIS terrestrial chlorophyll index (MTCI), vegetation-masked CHM (mCHM) and normalized GDD (nGDD) achieved an optimal accuracy (R-2 = 0.8069, RMSE = 0.1667 kg/m(2), nRMSE = 19.62%) through the polynomial regression method. This improved the nRMSE by 3.44% compared to the predictor using MTCI similar to mCHM. Moreover, the pixel-level fusion method slightly enhanced the nRMSE by similar to 0.3% for predicted accuracy compared to the feature-level fusion method. In conclusion, this paper demonstrated that an SM-CSRM using pixel-level fusion with canopy spectral, structural and meteorological factors can obtain a good level of accuracy for wheat biomass prediction. This finding could benefit the assessment of reclaimed cropland or the monitoring of crop growth and field management in precision agriculture.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Rice biomass estimation based on multispectral imagery from unmanned aerial vehicles
    Wang, Di
    Sun, Rong
    Su, Yong
    Yang, Bo
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2024, 40 (17): : 161 - 170
  • [2] Biomass estimation of cultivated red algae Pyropia using unmanned aerial platform based multispectral imaging
    Shuai Che
    Guoying Du
    Ning Wang
    Kun He
    Zhaolan Mo
    Bin Sun
    Yu Chen
    Yifei Cao
    Junhao Wang
    Yunxiang Mao
    Plant Methods, 17
  • [3] BIOMASS ESTIMATION OF THE CULTIVATED RED ALGA PYROPIA USING UNMANNED AERIAL PLATFORM BASED MULTISPECTRAL IMAGING
    Du, Guoying
    Che, Shuai
    Mao, YunXiang
    PHYCOLOGIA, 2021, 60 : 15 - 15
  • [4] Biomass estimation of cultivated red algae Pyropia using unmanned aerial platform based multispectral imaging
    Che, Shuai
    Du, Guoying
    Wang, Ning
    He, Kun
    Mo, Zhaolan
    Sun, Bin
    Chen, Yu
    Cao, Yifei
    Wang, Junhao
    Mao, Yunxiang
    PLANT METHODS, 2021, 17 (01)
  • [5] Estimating potato above-ground biomass by using integrated unmanned aerial system-based optical, structural, and textural canopy measurements
    Liu, Yang
    Feng, Haikuan
    Yue, Jibo
    Fan, Yiguang
    Bian, Mingbo
    Ma, Yanpeng
    Jin, Xiuliang
    Song, Xiaoyu
    Yang, Guijun
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2023, 213
  • [6] Wheat Yield Estimation Based on Unmanned Aerial Vehicle Multispectral Images and Texture Feature Indices
    Kang, Yiliang
    Wang, Yang
    Fan, Yanmin
    Wu, Hongqi
    Zhang, Yue
    Yuan, Binbin
    Li, Huijun
    Wang, Shuaishuai
    Li, Zhilin
    AGRICULTURE-BASEL, 2024, 14 (02):
  • [7] Unmanned Aerial System-Based Multispectral Water Quality Monitoring in the Iberian Pyrite Belt (SW Spain)
    Isgro, Melisa A.
    Basallote, M. Dolores
    Barbero, Luis
    MINE WATER AND THE ENVIRONMENT, 2022, 41 (01) : 30 - 41
  • [8] Unmanned Aerial System-Based Multispectral Water Quality Monitoring in the Iberian Pyrite Belt (SW Spain)
    Melisa A. Isgró
    M. Dolores Basallote
    Luis Barbero
    Mine Water and the Environment, 2022, 41 : 30 - 41
  • [9] Improvement of Winter Wheat Aboveground Biomass Estimation Using Digital Surface Model Information Extracted from Unmanned-Aerial-Vehicle-Based Multispectral Images
    Guo, Yan
    He, Jia
    Zhang, Huifang
    Shi, Zhou
    Wei, Panpan
    Jing, Yuhang
    Yang, Xiuzhong
    Zhang, Yan
    Wang, Laigang
    Zheng, Guoqing
    AGRICULTURE-BASEL, 2024, 14 (03):
  • [10] ESTIMATION OF MAIZE BIOMASS USING UNMANNED AERIAL VEHICLES
    Calou, Vinicius B. C.
    Teixeira, Adunias dos S.
    Moreira, Luis C. J.
    da Rocha Neto, Odilio C.
    da Silva, Jose A.
    ENGENHARIA AGRICOLA, 2019, 39 (06): : 744 - 752