Improvement of Winter Wheat Aboveground Biomass Estimation Using Digital Surface Model Information Extracted from Unmanned-Aerial-Vehicle-Based Multispectral Images

被引:4
|
作者
Guo, Yan [1 ,2 ,3 ]
He, Jia [1 ,2 ]
Zhang, Huifang [1 ,2 ]
Shi, Zhou [4 ]
Wei, Panpan [1 ,2 ]
Jing, Yuhang [1 ,2 ]
Yang, Xiuzhong [1 ,2 ,3 ]
Zhang, Yan [1 ,2 ,3 ]
Wang, Laigang [1 ,5 ]
Zheng, Guoqing [1 ,2 ,3 ]
机构
[1] Henan Acad Agr Sci, Inst Agr Informat Technol, Zhengzhou 450002, Peoples R China
[2] Minist Agr & Rural Affairs, Key Lab Huang Huai Hai Smart Agr Technol, Zhengzhou 450002, Peoples R China
[3] Henan Engn Res Ctr Crop Planting Monitoring & Warn, Zhengzhou 450002, Peoples R China
[4] Zhejiang Univ, Coll Environm & Resource Sci, Inst Agr Remote Sensing & Informat Technol Applica, Hangzhou 310058, Peoples R China
[5] Huanghe Sci & Technol Coll, Int Sch, Zhengzhou 450016, Peoples R China
来源
AGRICULTURE-BASEL | 2024年 / 14卷 / 03期
关键词
aboveground biomass; UAV; height; transferability; BP neural network; machine learning; VEGETATION INDEXES; HEIGHT;
D O I
10.3390/agriculture14030378
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Aboveground biomass (AGB) is an important indicator for characterizing crop growth conditions. A rapid and accurate estimation of AGB is critical for guiding the management of farmland and achieving production potential, and it can also provide vital data for ensuring food security. In this study, by applying different water and nitrogen treatments, an unmanned aerial vehicle (UAV) equipped with a multispectral imaging spectrometer was used to acquire images of winter wheat during critical growth stages. Then, the plant height (Hdsm) extracted from the digital surface model (DSM) information was used to establish and improve the estimation model of AGB, using the backpropagation (BP) neural network, a machine learning method. The results show that (1) the R2, root-mean-square error (RMSE), and relative predictive deviation (RPD) of the AGB estimation model, constructed directly using the Hdsm, are 0.58, 4528.23 kg/hm2, and 1.25, respectively. The estimated mean AGB (16,198.27 kg/hm2) is slightly smaller than the measured mean AGB (16,960.23 kg/hm2). (2) The R2, RMSE, and RPD of the improved AGB estimation model, based on AGB/Hdsm, are 0.88, 2291.90 kg/hm2, and 2.75, respectively, and the estimated mean AGB (17,478.21 kg/hm2) is more similar to the measured mean AGB (17,222.59 kg/hm2). The improved AGB estimation model boosts the accuracy by 51.72% compared with the AGB directly estimated using the Hdsm. Moreover, the improved AGB estimation model shows strong transferability in regard to different water treatments and different year scenarios, but there are differences in the transferability for different N-level scenarios. (3) Differences in the characteristics of the data are the key factors that lead to the different transferability of the AGB estimation model. This study provides an antecedent in regard to model construction and transferability estimation of AGB for winter wheat. We confirm that, when different datasets have similar histogram characteristics, the model is applicable to new scenarios.
引用
收藏
页数:17
相关论文
共 41 条
  • [1] Improved Estimation of Winter Wheat Aboveground Biomass Using Multiscale Textures Extracted from UAV-Based Digital Images and Hyperspectral Feature Analysis
    Fu, Yuanyuan
    Yang, Guijun
    Song, Xiaoyu
    Li, Zhenhong
    Xu, Xingang
    Feng, Haikuan
    Zhao, Chunjiang
    REMOTE SENSING, 2021, 13 (04) : 1 - 22
  • [2] Wheat Yield Estimation Based on Unmanned Aerial Vehicle Multispectral Images and Texture Feature Indices
    Kang, Yiliang
    Wang, Yang
    Fan, Yanmin
    Wu, Hongqi
    Zhang, Yue
    Yuan, Binbin
    Li, Huijun
    Wang, Shuaishuai
    Li, Zhilin
    AGRICULTURE-BASEL, 2024, 14 (02):
  • [3] A Three-Dimensional Conceptual Model for Estimating the Above-Ground Biomass of Winter Wheat Using Digital and Multispectral Unmanned Aerial Vehicle Images at Various Growth Stages
    Zhu, Yongji
    Liu, Jikai
    Tao, Xinyu
    Su, Xiangxiang
    Li, Wenyang
    Zha, Hainie
    Wu, Wenge
    Li, Xinwei
    REMOTE SENSING, 2023, 15 (13)
  • [4] Estimation of winter-wheat above-ground biomass using the wavelet analysis of unmanned aerial vehicle-based digital images and hyperspectral crop canopy images
    Yue, Jibo
    Zhou, Chengquan
    Guo, Wei
    Feng, Haikuan
    Xu, Kaijian
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2021, 42 (05) : 1602 - 1622
  • [5] Estimation of Nitrogen Nutrition Status in Winter Wheat From Unmanned Aerial Vehicle Based Multi-Angular Multispectral Imagery
    Lu, Ning
    Wang, Wenhui
    Zhang, Qiaofeng
    Li, Dong
    Yao, Xia
    Tian, Yongchao
    Zhu, Yan
    Cao, Weixing
    Baret, Fred
    Liu, Shouyang
    Cheng, Tao
    FRONTIERS IN PLANT SCIENCE, 2019, 10
  • [6] Spatio-Temporal Estimation of Biomass Growth in Rice Using Canopy Surface Model from Unmanned Aerial Vehicle Images
    Peprah, Clement Oppong
    Yamashita, Megumi
    Yamaguchi, Tomoaki
    Sekino, Ryo
    Takano, Kyohei
    Katsura, Keisuke
    REMOTE SENSING, 2021, 13 (12)
  • [7] Unmanned Aerial System-Based Wheat Biomass Estimation Using Multispectral, Structural and Meteorological Data
    Zhang, Jianyong
    Zhao, Yanling
    Hu, Zhenqi
    Xiao, Wu
    AGRICULTURE-BASEL, 2023, 13 (08):
  • [8] A Comparative Assessment of Different Modeling Algorithms for Estimating Leaf Nitrogen Content in Winter Wheat Using Multispectral Images from an Unmanned Aerial Vehicle
    Zheng, Hengbiao
    Li, Wei
    Jiang, Jiale
    Liu, Yong
    Cheng, Tao
    Tian, Yongchao
    Zhu, Yan
    Cao, Weixing
    Zhang, Yu
    Yao, Xia
    REMOTE SENSING, 2018, 10 (12)
  • [9] Estimation of the Bio-Parameters of Winter Wheat by Combining Feature Selection with Machine Learning Using Multi-Temporal Unmanned Aerial Vehicle Multispectral Images
    Zhang, Changsai
    Yi, Yuan
    Wang, Lijuan
    Zhang, Xuewei
    Chen, Shuo
    Su, Zaixing
    Zhang, Shuxia
    Xue, Yong
    REMOTE SENSING, 2024, 16 (03)
  • [10] Winter Wheat Aboveground-Biomass Estimation and Its Dynamic Variation during Coal Mining-Assessing by Unmanned Aerial Vehicle-Based Remote Sensing
    Lyu, Xiaoxuan
    Zhang, Hebing
    Chen, Zhichao
    Jiao, Yiheng
    Du, Weibing
    Zhang, Xufei
    Luo, Jialiang
    Zhang, Erwei
    AGRONOMY-BASEL, 2024, 14 (06):