Multi-peak positive solutions for a logarithmic Schrodinger equation via variational methods

被引:8
|
作者
Alves, Claudianor O. [1 ]
Ji, Chao [2 ]
机构
[1] Univ Fed Campina Grande, Unidade Academ Matemat, BR-58429900 Campina Grande, PB, Brazil
[2] East China Univ Sci & Technol, Sch Math, Shanghai 200237, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
BUMP STANDING WAVES; BOUND-STATES; NONLINEARITY; EXISTENCE;
D O I
10.1007/s11856-023-2494-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, using the variational methods, we show the existence and multiplicity of multi-peak positive solutions for the following logarithmic Schrodinger equation: - epsilon(2) Delta u + V (x)u = u logu(2), in R-N, u epsilon H-1(R-N), where c > 0, N = 2 and V : R-N -> R is a multi-well potential.
引用
收藏
页码:835 / 885
页数:51
相关论文
共 50 条
  • [21] Multi-peak solutions to the Schrodinger equations coupled with a neutral scalar field
    Cao, Daomin
    Lai, Shanfa
    Yu, Weilin
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (02)
  • [22] MULTI-PEAK SOLUTIONS FOR NONLINEAR CHOQUARD EQUATION WITH A GENERAL NONLINEARITY
    Yang, Minbo
    Zhang, Jianjun
    Zhang, Yimin
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2017, 16 (02) : 493 - 512
  • [23] Multi-peak solutions for the Henon equation with slightly subcritical growth
    Pistoia, Angela
    Serra, Enrico
    MATHEMATISCHE ZEITSCHRIFT, 2007, 256 (01) : 75 - 97
  • [24] Existence and concentration of positive solutions for a fractional Schrodinger logarithmic equation
    Wang, Li
    Feng, Shenghao
    Cheng, Kun
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024, 69 (02) : 317 - 348
  • [25] EXISTENCE AND CONCENTRATION OF POSITIVE SOLUTIONS FOR A FRACTIONAL LOGARITHMIC SCHRODINGER EQUATION
    Ji, Chao
    Xue, Ying
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2022, 35 (11-12) : 677 - 704
  • [26] Uniqueness of Positive Ground State Solutions of the Logarithmic Schrodinger Equation
    Troy, William C.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 222 (03) : 1581 - 1600
  • [27] Multi-peak soliton solutions of the generalized breaking soliton equation
    Kumar, Praveen
    Kumar, Dharmendra
    PHYSICA SCRIPTA, 2022, 97 (10)
  • [28] MULTI-PEAK SOLUTIONS FOR LOGARITHMIC SCHRO•DINGER EQUATIONS WITH POTENTIALS UNBOUNDED BELOW
    An, Xiaoming
    Yang, Xian
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2023, 43 (11) : 3940 - 3968
  • [29] Multi-peak breather stability in a dissipative discrete Nonlinear Schrodinger (NLS) equation
    Panayotaros, Panayotis
    Rivero, Felipe
    JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2014, 23 (04)
  • [30] Non-degeneracy of multi-peak solutions for the Schrodinger-Poisson problem
    Chen, Lin
    Ding, Hui-Sheng
    Li, Benniao
    Ye, Jianghua
    ADVANCED NONLINEAR STUDIES, 2023, 23 (01)