Predictive Modeling of the Uniaxial Compressive Strength of Rocks Using an Artificial Neural Network Approach

被引:16
|
作者
Wei, Xin [1 ]
Shahani, Niaz Muhammad [1 ,2 ]
Zheng, Xigui [1 ,2 ,3 ,4 ]
机构
[1] China Univ Min & Technol, Sch Mines, Xuzhou 221116, Peoples R China
[2] China Univ Min & Technol, State Key Lab Geo Mech & Deep Underground Engn, Xuzhou 221116, Peoples R China
[3] Liupanshui Normal Univ, Sch Mines & Civil Engn, Liupanshui 553001, Peoples R China
[4] Guizhou Guineng Investment Co Ltd, Liupanshui 553001, Peoples R China
关键词
artificial neural network; multiple linear regression; sedimentary rocks; Thar coalfield; uniaxial compressive strength; MODULUS; ELASTICITY; BEHAVIOR; ANFIS; TOOLS;
D O I
10.3390/math11071650
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Sedimentary rocks provide information on previous environments on the surface of the Earth. As a result, they are the principal narrators of the former climate, life, and important events on the surface of the Earth. The complexity and cost of direct destructive laboratory tests adversely affect the data scarcity problem, making the development of intelligent indirect methods an integral step in attempts to address the problem faced by rock engineering projects. This study established an artificial neural network (ANN) approach to predict the uniaxial compressive strength (UCS) in MPa of sedimentary rocks using different input parameters; i.e., dry density (?(d)) in g/cm(3), Brazilian tensile strength (BTS) in MPa, and wet density (?(wet)) in g/cm(3). The developed ANN models, M1, M2, and M3, were divided as follows: the overall dataset, 70% training dataset and 30% testing dataset, and 60% training dataset and 40% testing dataset, respectively. In addition, multiple linear regression (MLR) was performed for comparison to the proposed ANN models to verify the accuracy of the predicted values. The performance indices were also calculated by estimating the established models. The predictive performance of the M2 ANN model in terms of the coefficient of determination (R-2), root mean squared error (RMSE), variance accounts for (VAF), and a20-index was 0.831, 0.27672, 0.92, and 0.80, respectively, in the testing dataset, revealing ideal results, thus it was proposed as the best-fit prediction model for UCS of sedimentary rocks at the Thar coalfield, Pakistan, among the models developed in this study. Moreover, by performing a sensitivity analysis, it was determined that BTS was the most influential parameter in predicting UCS.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Prediction of the uniaxial compressive strength of rocks from simple index tests using a random forest predictive model
    Wang, Min
    Wan, Wen
    Zhao, Yanlin
    COMPTES RENDUS MECANIQUE, 2020, 348 (01): : 3 - 32
  • [32] Uniaxial compressive strength and point load strength of rocks - Discussion
    Irfan, TY
    Cheung, LS
    INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 1998, 35 (01): : 101 - 102
  • [33] Prediction of Compressive Strength of Concrete Using Artificial Neural Network and Genetic Programming
    Chopra, Palika
    Sharma, Rajendra Kumar
    Kumar, Maneek
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2016, 2016
  • [34] Compressive Strength Prediction of Stabilized Dredged Sediments Using Artificial Neural Network
    Van Quan Tran
    ADVANCES IN CIVIL ENGINEERING, 2021, 2021
  • [35] Predicting the compressive strength of concrete using rebound method and artificial neural network
    Liu, Jianming
    Li, Huijian
    He, Changjun
    ICIC Express Letters, 2011, 5 (4 A): : 1115 - 1120
  • [36] PREDICTING THE COMPRESSIVE STRENGTH OF SELF COMPACTING CONCRETE USING ARTIFICIAL NEURAL NETWORK
    Yu Zi-ruo
    An Ming-zhe
    Zhang Ming-bo
    2ND INTERNATIONAL SYMPOSIUM ON DESIGN, PERFORMANCE AND USE OF SELF-CONSOLIDATING CONCRETE, 2009, 65 : 452 - 459
  • [37] Concrete Compressive Strength Prediction Using Rebound Method with Artificial Neural Network
    Liu, Jianming
    Li, Huijian
    He, Changjun
    MANUFACTURING SCIENCE AND MATERIALS ENGINEERING, PTS 1 AND 2, 2012, 443-444 : 34 - 39
  • [38] Prediction of soil unconfined compressive strength using Artificial Neural Network model
    Hoang-Anh Le
    Thuy-Anh Nguyen
    Duc-Dam Nguyen
    Prakash, Indra
    VIETNAM JOURNAL OF EARTH SCIENCES, 2020, 42 (03): : 255 - 264
  • [39] Optimizing compressive strength prediction of pervious concrete using artificial neural network
    Wijekoon, Sathushka Heshan Bandara
    Janarth, Asoharasa
    Dharmar, Joseph
    Vinojan, Perinparasa
    Sathiparan, Navaratnarajah
    Subramaniam, Daniel Niruban
    ENGINEERING RESEARCH EXPRESS, 2025, 7 (01):
  • [40] A global modeling approach using artificial neural network
    Goasguen, S
    Hammadi, SM
    El-Ghazaly, SM
    1999 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, VOLS 1-4, 1999, : 153 - 156