COMBATdb: a database for the COVID-19 Multi-Omics Blood ATlas

被引:5
|
作者
Wang, Dapeng [1 ,7 ]
Kumar, Vinod [2 ]
Burnham, Katie L. [3 ]
Mentzer, Alexander J. [1 ]
Marsden, Brian D. [2 ,4 ]
Knight, Julian C. [1 ,5 ,6 ]
机构
[1] Univ Oxford, Wellcome Ctr Human Genet, Oxford OX3 7BN, England
[2] Univ Oxford, Kennedy Inst Rheumatol, Oxford, England
[3] Wellcome Sanger Inst, Cambridge, England
[4] Univ Oxford, Ctr Med Discovery, NDM, Oxford OX3 7BN, England
[5] Univ Oxford, Chinese Acad Med Sci, Oxford Inst, Oxford, England
[6] NIHR Oxford Biomed Res Ctr, Oxford, England
[7] Imperial Coll London, Natl Heart & Lung Inst, London SW3 6LY, England
基金
英国惠康基金; 英国医学研究理事会;
关键词
CELLS; VISUALIZATION; IMMUNOLOGY; MILD;
D O I
10.1093/nar/gkac1019
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Advances in our understanding of the nature of the immune response to SARS-CoV-2 infection, and how this varies within and between individuals, is important in efforts to develop targeted therapies and precision medicine approaches. Here we present a database for the COvid-19 Multi-omics Blood ATlas (COMBAT) project, COMBATdb (https://db.combat.ox.ac.uk). This enables exploration of multi-modal datasets arising from profiling of patients with different severities of illness admitted to hospital in the first phase of the pandemic in the UK prior to vaccination, compared with community cases, healthy controls, and patients with all-cause sepsis and influenza. These data include whole blood transcriptomics, plasma proteomics, epigenomics, single-cell multi-omics, immune repertoire sequencing, flow and mass cytometry, and cohort metadata. COMBATdb provides access to the processed data in a well-defined framework of samples, cell types and genes/proteins that allows exploration across the assayed modalities, with functionality including browse, search, download, calculation and visualisation via shiny apps. This advances the ability of users to leverage COMBAT datasets to understand the pathogenesis of COVID-19, and the nature of specific and shared features with other infectious diseases.
引用
收藏
页码:D896 / D905
页数:10
相关论文
共 50 条
  • [41] Comparisons of the immunological landscape of COVID-19 patients based on sex and disease severity by multi-omics analysis
    Zhang, Tianfang
    Abdelrahman, Zeinab
    Liu, Qian
    Wang, Xiaosheng
    Chen, Zuobing
    CHEMICO-BIOLOGICAL INTERACTIONS, 2022, 352
  • [42] Early Prediction of COVID-19 Patient Survival by Targeted Plasma Multi-Omics and Machine Learning br
    Richard, Vincent R.
    Gaither, Claudia
    Popp, Robert
    Chaplygina, Daria
    Brzhozovskiy, Alexander
    Kononikhin, Alexey
    Mohammed, Yassene
    Zahedi, Rene P.
    Nikolaev, Evgeny N.
    Borchers, Christoph H.
    MOLECULAR & CELLULAR PROTEOMICS, 2022, 21 (10)
  • [43] Multi-Omics Resolves a Sharp Disease-State Shift between Mild and Moderate COVID-19
    Su, Yapeng
    Chen, Daniel
    Yuan, Dan
    Lausted, Christopher
    Choi, Jongchan
    Dai, Chengzhen L.
    Voillet, Valentin
    Duvvuri, Venkata R.
    Scherler, Kelsey
    Troisch, Pamela
    Baloni, Priyanka
    Qin, Guangrong
    Smith, Brett
    Kornilov, Sergey A.
    Rostomily, Clifford
    Xu, Alex
    Li, Jing
    Dong, Shen
    Rothchild, Alissa
    Zhou, Jing
    Murray, Kim
    Edmark, Rick
    Hong, Sunga
    Heath, John E.
    Earls, John
    Zhang, Rongyu
    Xie, Jingyi
    Li, Sarah
    Roper, Ryan
    Jones, Lesley
    Zhou, Yong
    Rowen, Lee
    Liu, Rachel
    Mackay, Sean
    O'Mahony, D. Shane
    Dale, Christopher R.
    Wallick, Julie A.
    Algren, Heather A.
    Zager, Michael A.
    Wei, Wei
    Price, Nathan D.
    Huang, Sui
    Subramanian, Naeha
    Wang, Kai
    Magis, Andrew T.
    Hadlock, Jenn J.
    Hood, Leroy
    Aderem, Alan
    Bluestone, Jeffrey A.
    Lanier, Lewis L.
    CELL, 2020, 183 (06) : 1479 - +
  • [44] Fecal multi-omics analysis reveals diverse molecular alterations of gut ecosystem in COVID-19 patients
    He, Feixiang
    Zhang, Ting
    Xue, Kewen
    Fang, Zhaoxiong
    Jiang, Guanmin
    Huang, Siwen
    Li, Kexue
    Gu, Zhiqiang
    Shi, Honggang
    Zhang, Zhenyi
    Zhu, Huijin
    Lin, Lu
    Li, Jialin
    Xiao, Fei
    Shan, Hong
    Yan, Ru
    Li, Xiaofeng
    Yan, Zhixiang
    ANALYTICA CHIMICA ACTA, 2021, 1180
  • [45] A multi-omics based anti-inflammatory immune signature characterizes long COVID-19 syndrome
    Kovarik, Johannes J.
    Bileck, Andrea
    Hagn, Gerhard
    Meier-Menches, Samuel M.
    Frey, Tobias
    Kaempf, Anna
    Hollenstein, Marlene
    Shoumariyeh, Tarik
    Skos, Lukas
    Reiter, Birgit
    Gerner, Marlene C.
    Spannbauer, Andreas
    Hasimbegovic, Ena
    Schmidl, Doreen
    Garhofer, Gerhard
    Gyongyosi, Mariann
    Schmetterer, Klaus G.
    Gerner, Christopher
    ISCIENCE, 2023, 26 (01)
  • [46] Early immune markers of clinical, virological, and immunological outcomes in patients with COVID-19: a multi-omics study
    Hu, Zicheng
    van der Ploeg, Kattria
    Chakraborty, Saborni
    Arunachalam, Prabhu S.
    Mori, Diego A. M.
    Jacobson, Karen B.
    Bonilla, Hector
    Parsonnet, Julie
    Andrews, Jason R.
    Holubar, Marisa
    Subramanian, Aruna
    Khosla, Chaitan
    Maldonado, Yvonne
    Hedlin, Haley
    de la Parte, Lauren
    Press, Kathleen
    Ty, Maureen
    Tan, Gene S.
    Blish, Catherine
    Takahashi, Saki
    Rodriguez-Barraquer, Isabel
    Greenhouse, Bryan
    Butte, Atul J.
    Singh, Upinder
    Pulendran, Bali
    Wang, Taia T.
    Jagannathan, Prasanna
    Davenport, Miles P.
    ELIFE, 2022, 11
  • [47] Multi-omics characterization of RNA binding proteins reveals disease comorbidities and potential drugs in COVID-19
    Pan, Jiwei
    Gao, Yueying
    Han, Huirui
    Pan, Tao
    Guo, Jing
    Li, Si
    Xu, Juan
    Li, Yongsheng
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 155
  • [48] Yersiniomics, a Multi-Omics Interactive Database for Yersinia Species
    Le-Bury, Pierre
    Druart, Karen
    Savin, Cyril
    Lechat, Pierre
    Mas Fiol, Guillem
    Matondo, Mariette
    Becavin, Christophe
    Dussurget, Olivier
    Pizarro-Cerda, Javier
    MICROBIOLOGY SPECTRUM, 2023, 11 (02):
  • [49] LettuceDB: an integrated multi-omics database for cultivated lettuce
    Zhou, Wenhui
    Yang, Tao
    Zeng, Liucui
    Chen, Jing
    Wang, Yayu
    Guo, Xing
    You, Lijin
    Liu, Yiqun
    Du, Wensi
    Yang, Fan
    Hua, Cong
    Cai, Jia
    van Hintum, Theo
    Liu, Huan
    Gu, Ying
    Wei, Xiaofeng
    Wei, Tong
    DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION, 2024, 2024
  • [50] SoyOmics: A deeply integrated database on soybean multi-omics
    Li, Yuchen
    Zhang, Yang
    Liu, Xiaonan
    Shen, Yanting
    Tian, Dongmei
    Yang, Xiaoyue
    Liu, Shulin
    Ni, Lingbin
    Zhang, Zhang
    Song, Shuhui
    Tian, Zhixi
    MOLECULAR PLANT, 2023, 16 (05) : 794 - 797