Large-scale loss-of-function perturbations reveal a comprehensive epigenetic regulatory network in breast cancer

被引:0
|
作者
Wang, Yumei [1 ]
Wang, Haiyan [2 ]
Shao, Wei [2 ]
Chen, Yuhui [1 ]
Gui, Yu [3 ,4 ]
Hu, Chao [5 ]
Yi, Xiaohong [1 ]
Huang, Lijun [1 ]
Li, Shasha [6 ,7 ]
Wang, Dong [1 ]
机构
[1] Chengdu Univ Tradit Chinese Med, Sch Basic Med Sci, State Key Lab Southwestern Chinese Med Resources, Chengdu 611137, Peoples R China
[2] Qinghai Univ, Sch Med, Dept Pathol, Xining 810001, Peoples R China
[3] Sichuan Univ, West China Hosp, Clin Res Ctr Breast, Lab Integrat Med, Chengdu 610041, Peoples R China
[4] Collaborat Innovat Ctr, Chengdu 610041, Peoples R China
[5] Chengdu Univ Tradit Chinese Med, Sch Pharm, State Key Lab Southwestern Chinese Med Resources, Chengdu 611137, Peoples R China
[6] Sun Yat Sen Univ, Med Ctr Comprehens Weight Control, Dept Endocrinol & Metab, Guangdong Prov Key Lab Diabetol,Affiliated Hosp 3, Guangzhou 510630, Peoples R China
[7] Sun Yat Sen Univ, Affiliated Hosp 3, Med Ctr Comprehens Weight Control, Guangzhou Municipal Key Lab Mechanist & Translat O, Guangzhou 510630, Peoples R China
基金
中国国家自然科学基金;
关键词
Epigenetic regulators; breast cancer; regulatory network; HTS2; LSD1; EXPRESSION; PACKAGE; COMPLEX; SFMBT1; GENES;
D O I
10.20892/j.issn.2095-3941.2023.0276
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Objective: Epigenetic abnormalities have a critical role in breast cancer by regulating gene expression; however, the intricate interrelationships and key roles of approximately 400 epigenetic regulators in breast cancer remain elusive. It is important to decipher the comprehensive epigenetic regulatory network in breast cancer cells to identify master epigenetic regulators and potential therapeutic targets.Methods: We employed high-throughput sequencing-based high-throughput screening (HTS2) to effectively detect changes in the expression of 2,986 genes following the knockdown of 400 epigenetic regulators. Then, bioinformatics analysis tools were used for the resulting gene expression signatures to investigate the epigenetic regulations in breast cancer.Results: Utilizing these gene expression signatures, we classified the epigenetic regulators into five distinct clusters, each characterized by specific functions. We discovered functional similarities between BAZ2B and SETMAR, as well as CLOCK and CBX3. Moreover, we observed that CLOCK functions in a manner opposite to that of HDAC8 in downstream gene regulation. Notably, we constructed an epigenetic regulatory network based on the gene expression signatures, which revealed 8 distinct modules and identified 10 master epigenetic regulators in breast cancer.Conclusions: Our work deciphered the extensive regulation among hundreds of epigenetic regulators. The identification of 10 master epigenetic regulators offers promising therapeutic targets for breast cancer treatment.
引用
收藏
页码:83 / 103
页数:21
相关论文
共 50 条
  • [41] Large-scale DNA organization is a prognostic marker of breast cancer survival
    Guillaud, Martial
    Ye, Qian
    Leung, Sam
    Carraro, Anita
    Harrison, Alan
    Hayes, Malcolm
    Nichol, Alan
    Keyes, Mira
    [J]. MEDICAL ONCOLOGY, 2018, 35 (01)
  • [42] Single allele loss-of-function mutations select and sculpt conditional cooperative networks in breast cancer
    Nathan F. Schachter
    Jessica R. Adams
    Patryk Skowron
    Katelyn. J. Kozma
    Christian A. Lee
    Nandini Raghuram
    Joanna Yang
    Amanda J. Loch
    Wei Wang
    Aaron Kucharczuk
    Katherine L. Wright
    Rita M. Quintana
    Yeji An
    Daniel Dotzko
    Jennifer L. Gorman
    Daria Wojtal
    Juhi S. Shah
    Paul Leon-Gomez
    Giovanna Pellecchia
    Adam J. Dupuy
    Charles M. Perou
    Ittai Ben-Porath
    Rotem Karni
    Eldad Zacksenhaus
    Jim R. Woodgett
    Susan J. Done
    Livia Garzia
    A. Sorana Morrissy
    Jüri Reimand
    Michael D. Taylor
    Sean E. Egan
    [J]. Nature Communications, 12
  • [43] Large-scale omics data reveal the cooperation of mutation-circRNA-miRNA-target gene network in liver cancer oncogenesis
    Li, Jian
    Yu, Chun-Peng
    Li, Qun
    Chang, Shuai
    Xie, Ling-Ling
    Wang, Song
    [J]. FUTURE ONCOLOGY, 2021, 18 (02) : 163 - 178
  • [44] Germline loss-of-function variants in the BARD1 gene are associated with familial breast cancer
    Weber-Lassalle, N.
    Weber-Lassalle, K.
    Borde, J.
    Neidhardt, G.
    Ernst, C.
    Bluemcke, B.
    Klonowska, K.
    Volk, A. E.
    Kubisch, C.
    Baber, R.
    Engel, C.
    Kozlowski, P.
    Hahnen, E.
    Schmutzler, R. K.
    Hauke, J.
    [J]. EUROPEAN JOURNAL OF HUMAN GENETICS, 2019, 27 : 402 - 403
  • [45] Single allele loss-of-function mutations select and sculpt conditional cooperative networks in breast cancer
    Schachter, Nathan F.
    Adams, Jessica R.
    Skowron, Patryk
    Kozma, Katelyn J.
    Lee, Christian A.
    Raghuram, Nandini
    Yang, Joanna
    Loch, Amanda J.
    Wang, Wei
    Kucharczuk, Aaron
    Wright, Katherine L.
    Quintana, Rita M.
    An, Yeji
    Dotzko, Daniel
    Gorman, Jennifer L.
    Wojtal, Daria
    Shah, Juhi S.
    Leon-Gomez, Paul
    Pellecchia, Giovanna
    Dupuy, Adam J.
    Perou, Charles M.
    Ben-Porath, Ittai
    Karni, Rotem
    Zacksenhaus, Eldad
    Woodgett, Jim R.
    Done, Susan J.
    Garzia, Livia
    Morrissy, A. Sorana
    Reimand, Juri
    Taylor, Michael D.
    Egan, Sean E.
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [46] THE CANCER COMMUNICATIONS NETWORK - EVALUATION OF A LARGE-SCALE NATIONAL INFORMATION PROGRAM
    STEIN, JA
    KEAN, TJ
    [J]. MEDICAL AND PEDIATRIC ONCOLOGY, 1983, 11 (06): : A58 - A58
  • [47] Large-scale electrophysiology and deep learning reveal distorted neural signal dynamics after hearing loss
    Sabesan, Shievanie
    Fragner, Andreas
    Bench, Ciaran
    Drakopoulos, Fotios
    Lesica, Nicholas A.
    [J]. ELIFE, 2023, 12
  • [48] The GPCR Network: a large-scale collaboration to determine human GPCR structure and function
    Stevens, Raymond C.
    Cherezov, Vadim
    Katritch, Vsevolod
    Abagyan, Ruben
    Kuhn, Peter
    Rosen, Hugh
    Wuethrich, Kurt
    [J]. NATURE REVIEWS DRUG DISCOVERY, 2013, 12 (01) : 25 - 34
  • [49] NetGO: improving large-scale protein function prediction with massive network information
    You, Ronghui
    Yao, Shuwei
    Xiong, Yi
    Huang, Xiaodi
    Sun, Fengzhu
    Mamitsuka, Hiroshi
    Zhu, Shanfeng
    [J]. NUCLEIC ACIDS RESEARCH, 2019, 47 (W1) : W379 - W387
  • [50] DeepGraphGO: graph neural network for large-scale, multispecies protein function prediction
    You, Ronghui
    Yao, Shuwei
    Mamitsuka, Hiroshi
    Zhu, Shanfeng
    [J]. BIOINFORMATICS, 2021, 37 : I262 - I271