Broadband Van-der-Waals Photodetector Driven by Ferroelectric Polarization

被引:1
|
作者
Kim, Sungjun [1 ,2 ,3 ]
Lee, Sunghun [3 ]
Oh, Seyong [4 ]
Lee, Kyeong-Bae [3 ]
Lee, Je-Jun [3 ]
Kim, Byeongchan [3 ]
Heo, Keun [5 ]
Park, Jin-Hong [3 ,6 ]
机构
[1] Samsung Elect Co Ltd, Foundry Div, Yongin 17113, South Korea
[2] Samsung Inst Technol, Yongin 17113, South Korea
[3] Sungkyunkwan Univ SKKU, Dept Elect & Comp Engn, Suwon 16419, South Korea
[4] Hanyang Univ, ERICA, Div Elect Engn, Ansan 15588, South Korea
[5] Jeonbuk Natl Univ, Semicond Phys Res Ctr, Sch Semicond & Chem Engn, Jeonju 54896, Jeollabuk Do, South Korea
[6] Sungkyunkwan Univ SKKU, SKKU Adv Inst Nanotechnol SAINT, Suwon 16419, South Korea
基金
新加坡国家研究基金会;
关键词
broadband photodetectors; ferroelectric polarization; P(VDF-TrFE); rhenium disulfide; tungsten diselenide; vdW heterojunction; INFRARED PHOTODETECTION; PERFORMANCE; TRANSITION; TRANSISTORS; DETECTORS;
D O I
10.1002/smll.202305045
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The potential for various future industrial applications has made broadband photodetectors beyond visible light an area of great interest. Although most 2D van-der-Waals (vdW) semiconductors have a relatively large energy bandgap (>1.2 eV), which limits their use in short-wave infrared detection, they have recently been considered as a replacement for ternary alloys in high-performance photodetectors due to their strong light-matter interaction. In this study, a ferroelectric gating ReS2/WSe2 vdW heterojunction-channel photodetector is presented that successfully achieves broadband light detection (>1300 nm, expandable up to 2700 nm). The staggered type-II bandgap alignment creates an interlayer gap of 0.46 eV between the valence band maximum (VBMAX) of WSe2 and the conduction band minimum (CBMIN) of ReS2. Especially, the control of poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) ferroelectric dipole polarity for a specific wavelength allows a high photoresponsivity of up to 6.9 x 10(3) A W-1 and a low dark current below 0.26 nA under the laser illumination with a wavelength of 405 nm in P-up mode. The achieved high photoresponsivity, low dark current, and full-range near infrared (NIR) detection capability open the door for next-generation photodetectors beyond traditional ternary alloy photodetectors.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] An ultrafast photodetector driven by interlayer exciton dissociation in a van der Waals heterostructure
    Lopriore, Edoardo
    Marin, Enrique G.
    Fiori, Gianluca
    NANOSCALE HORIZONS, 2022, 7 (01) : 41 - 50
  • [22] Van der Waals semiconductor based self-powered transparent broadband photodetector
    Kumar, Naveen
    Kumail, Muhammad
    Lee, Junghyun
    Park, Hyeong Gi
    Kim, Joondong
    MATERIALS RESEARCH BULLETIN, 2023, 168
  • [23] GENERALIZED VAN-DER-WAALS MODEL APPLIED TO TETRAMETHYLSILANE
    BAONZA, VG
    ALONSO, MC
    DELGADO, JN
    BERICHTE DER BUNSEN-GESELLSCHAFT-PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1994, 98 (01): : 53 - 58
  • [24] STATISTICAL-THEORY OF VAN-DER-WAALS FORCES
    TULUB, AV
    BALMAKOV, MD
    DOKLADY AKADEMII NAUK SSSR, 1972, 205 (01): : 64 - &
  • [25] VAN-DER-WAALS FORCES BETWEEN IMMERSED PARTICLES
    BARGEMAN, D
    VANVOORS.F
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1972, 37 (JUN): : 45 - &
  • [26] VAN-DER-WAALS ATTRACTION FORCES AND LINE TENSION
    TOSHEV, BV
    AVRAMOV, MZ
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 1995, 100 : 203 - 205
  • [27] On the influence of Van-der-Waals forces on coagulation of aerosols
    Tikhomirov, MV
    Tunitzky, NN
    Petrjanov, JB
    ACTA PHYSICOCHIMICA URSS, 1942, 17 : 185 - 196
  • [28] THERMODYNAMIC EQUIVALENCE OF VAN-DER-WAALS SPIN SYSTEMS
    VERTOGEN, G
    DEVRIES, AS
    PHYSICA, 1972, 59 (04): : 634 - &
  • [29] NEW APPLICATIONS OF VAN-DER-WAALS RADII IN CHEMISTRY
    ZEFIROV, YV
    ZORKY, PM
    USPEKHI KHIMII, 1995, 64 (05) : 446 - 461
  • [30] VAN-DER-WAALS INTERACTION IN DODECYLAMMONIUM LAYER SILICATES
    LAGALY, G
    WEISS, A
    ZEITSCHRIFT FUR NATURFORSCHUNG PART B-CHEMIE BIOCHEMIE BIOPHYSIK BIOLOGIE UND VERWANDTEN GEBIETE, 1969, B 24 (08): : 1057 - &