Pt-Fe-Co Ternary Metal Single Atom Catalyst for toward High Efficiency Alkaline Oxygen Reduction Reaction

被引:2
|
作者
Zhang, Ruimin [1 ]
Wang, Ke [1 ]
Wang, Peng [1 ]
He, Yan [1 ]
Liu, Zhiming [1 ]
机构
[1] Qingdao Univ Sci & Technol, Coll Electromech Engn, Shandong Engn Lab Preparat & Applicat High Perform, Qingdao 266061, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
oxygen reduction reaction; electrocatalysts; single atom; ternary metal; kinetics; ELECTROCATALYSTS; NANOSHEETS;
D O I
10.3390/en16093684
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Single-atom catalysts (SACs) within carbon matrix became one of the most promising alternatives to noble metal-based catalysts for oxygen reduction reaction (ORR). Although SACs have significant benefits in reducing the total catalyst cost, it also has the disadvantages of weak interaction between atoms and poor stability. Hence, there is still much room for improvement for the catalyst activity. In response, we designed a Fe-Co-Pt ternary metal single atom catalyst anchored on covalent organic framework (COF)-derived N-doped carbon nanospheres (Pt, Fe, Co/N-C). Due to effective charge transfer between Pt single atom and neighboring Fe-Co components, an intense electron interaction can be established within the Pt, Fe, Co/N-C catalyst. This is beneficial for enhancing charge transfer efficiency, modulating d electronic structure of Pt center and weakening oxygen intermediate adsorption, thus distinctly accelerating ORR catalytic kinetics. As expected, the half-wave potential of Pt, Fe, Co/N-C was 0.845 V, much higher than those of commercial 20 wt% Pt/C (0.835 V), Pt/N-C (0.79 V) and Fe, Co/N-C (0.81 V) counterparts. Moreover, the Pt, Fe, Co/N-C catalyst demonstrated much-improved cycling stability and methanol tolerance.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction
    Baokang Geng
    Xiang Chu
    Li Liu
    Lingling Zhang
    Shuaishuai Zhang
    Xiao Wang
    Shuyan Song
    Hongjie Zhang
    ChineseChemicalLetters, 2024, 35 (07) : 506 - 509
  • [32] High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction
    Geng, Baokang
    Chu, Xiang
    Liu, Li
    Zhang, Lingling
    Zhang, Shuaishuai
    Wang, Xiao
    Song, Shuyan
    Zhang, Hongjie
    CHINESE CHEMICAL LETTERS, 2024, 35 (07)
  • [33] Regulating the Local Microenvironment of an Fe-N4 Single-Atom Catalyst for Enhanced Oxygen Reduction Reaction
    Sun, Zhiguo
    Sun, Yuanhua
    Zhang, Xue
    Liu, Xiaokang
    Jiang, Shuaiwei
    Luo, Qiquan
    Xu, Faqiang
    Cao, Linlin
    Yao, Tao
    JOURNAL OF PHYSICAL CHEMISTRY C, 2024, 128 (18): : 7463 - 7471
  • [34] Surface Molecular Encapsulation with Cyclodextrin in Promoting the Activity and Stability of Fe Single-Atom Catalyst for Oxygen Reduction Reaction
    Chen, Changli
    Li, Haijing
    Chen, Jingzhao
    Li, Dong
    Chen, Wenxing
    Dong, Juncai
    Sun, Mengru
    Li, Yujing
    ENERGY & ENVIRONMENTAL MATERIALS, 2023, 6 (02)
  • [35] Surface Molecular Encapsulation with Cyclodextrin in Promoting the Activity and Stability of Fe Single-Atom Catalyst for Oxygen Reduction Reaction
    Changli Chen
    Haijing Li
    Jingzhao Chen
    Dong Li
    Wenxing Chen
    Juncai Dong
    Mengru Sun
    Yujing Li
    Energy & Environmental Materials, 2023, 6 (02) : 338 - 345
  • [36] Surface Molecular Encapsulation with Cyclodextrin in Promoting the Activity and Stability of Fe Single-Atom Catalyst for Oxygen Reduction Reaction
    Changli Chen
    Haijing Li
    Jingzhao Chen
    Dong Li
    Wenxing Chen
    Juncai Dong
    Mengru Sun
    Yujing Li
    Energy & Environmental Materials , 2023, (02) : 338 - 345
  • [37] High-Loading Pt-Co/C Catalyst with Enhanced Durability toward the Oxygen Reduction Reaction through Surface Au Modification
    Wang, Feng
    Zhang, Qi
    Rui, Zhiyan
    Li, Jia
    Liu, Jianguo
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (27) : 30381 - 30389
  • [38] A high-durability palladium catalyst for the oxygen reduction reaction in an alkaline environment
    Bae, Hyo Eun
    Park, Ji Eun
    Huynh, T. B. Ngoc
    Song, Jihyeok
    Cho, Sung Ki
    Sung, Yung-Eun
    Cho, Yong-Hun
    Kwon, Oh Joong
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (45) : 31467 - 31479
  • [39] Fe/Ni-N-CNFs electrochemical catalyst for oxygen reduction reaction/oxygen evolution reaction in alkaline media
    Wang, Zhuang
    Li, Mian
    Fan, Liquan
    Han, Jianan
    Xiong, Yueping
    APPLIED SURFACE SCIENCE, 2017, 401 : 89 - 99
  • [40] High performance platinum single atom electrocatalyst for oxygen reduction reaction
    Liu, Jing
    Jiao, Menggai
    Lu, Lanlu
    Barkholtz, Heather M.
    Li, Yuping
    Wang, Ying
    Jiang, Luhua
    Wu, Zhijian
    Liu, Di-Jia
    Zhuang, Lin
    Ma, Chao
    Zeng, Jie
    Zhang, Bingsen
    Su, Dangsheng
    Song, Ping
    Xing, Wei
    Xu, Weilin
    Wang, Ying
    Jiang, Zheng
    Sun, Gongquan
    NATURE COMMUNICATIONS, 2017, 8