Mosquito swarm counting via attention-based multi-scale convolutional neural network

被引:2
|
作者
Chen, Huahua [1 ]
Ren, Junhao [1 ]
Sun, Wensheng [1 ]
Hou, Juan [2 ]
Miao, Ziping [2 ]
机构
[1] Hangzhou Dianzi Univ, Sch Commun Engn, 1158 2nd St, Hangzhou, Peoples R China
[2] Zhejiang Prov Ctr Dis Control & Prevent, 630 Xincheng Rd, Hangzhou, Peoples R China
关键词
CHINA;
D O I
10.1038/s41598-023-30387-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Monitoring mosquito density to predict the risk of transmission of the virus and develop a response in advance is an important part of prevention efforts. This paper aims to estimate accurately the mosquito swarm count from a given image. To this end, we proposed an attention-based multi-scale mosquito swarm counting model that consists of the feature extraction network (FEN) and attention based multi-scale regression network (AMRN). The FEN uses VGG-16 network to extract low-level features of mosquitoes. The AMRN adopts a multi-scale convolutional neural network, and with a squeeze and excitation channel attention module in the branch with a 7 x 7 convolution kernel to extract high-level features, map the feature map to the mosquito swarm density map and estimate mosquitoes count. We collected and labelled a data set that includes 391 mosquito swarm images with 15,466 mosquitoes. Experiments show that our method performs well on the data set and achieves mean absolute error (MAE) of 1.810 and root mean square error (RMSE) of 3.467.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] ACCNet: Attention-based Contextual Convolutional Network for Crowd Counting
    Huang, Yaoying
    Zhu, Aichun
    Duan, Guoxiu
    Hu, Fangqiang
    Li, Yifeng
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 1926 - 1931
  • [32] Fault Diagnosis Method for Bearing Based on Attention Mechanism and Multi-Scale Convolutional Neural Network
    Shen, Qimin
    Zhang, Zengqiang
    IEEE ACCESS, 2024, 12 : 12940 - 12952
  • [33] Side-channel attacks based on attention mechanism and multi-scale convolutional neural network
    He, Pengfei
    Zhang, Ying
    Gan, Han
    Ma, Jianfei
    Zhang, Hongxin
    COMPUTERS & ELECTRICAL ENGINEERING, 2024, 119
  • [34] Pattern recognition of surface electromyography based on multi-scale convolutional neural network with attention mechanism
    Wang B.
    Zheng H.
    Jie J.
    Zhang M.
    Ke Y.
    Liu Y.
    International Journal of Wireless and Mobile Computing, 2022, 23 (3-4) : 293 - 301
  • [35] Multi-scale event causality extraction via simultaneous knowledge-attention and convolutional neural network
    Yu, Xiaoxiao
    Wang, Xinzhi
    Luo, Xiangfeng
    Gao, Jianqi
    EXPERT SYSTEMS, 2022, 39 (05)
  • [36] QoS Prediction via Multi-scale Feature Fusion Based on Convolutional Neural Network
    Xu, Hanzhi
    Shu, Yanjun
    Zhang, Zhan
    Zuo, Decheng
    SERVICE-ORIENTED COMPUTING, ICSOC 2023, PT I, 2023, 14419 : 119 - 134
  • [37] Kernel Attention Based Multi-scale Adaptive Graph Convolutional Neural Network for Skeleton-Based
    Liu, Yanan
    Zhang, Hao
    Xu, Dan
    2021 IEEE 7TH INTERNATIONAL CONFERENCE ON VIRTUAL REALITY (ICVR 2021), 2021, : 96 - 103
  • [38] Multi-scale face detection based on convolutional neural network
    Luo, Mingzhu
    Xiao, Yewei
    Zhou, Yan
    2018 CHINESE AUTOMATION CONGRESS (CAC), 2018, : 1752 - 1757
  • [39] DDoS Attack Detection via Multi-Scale Convolutional Neural Network
    Cheng, Jieren
    Liu, Yifu
    Tang, Xiangyan
    Sheng, Victor S.
    Li, Mengyang
    Li, Junqi
    CMC-COMPUTERS MATERIALS & CONTINUA, 2020, 62 (03): : 1317 - 1333
  • [40] Multi-Scale Guided Attention Network for Crowd Counting
    Li, Pengfei
    Zhang, Min
    Wan, Jian
    Jiang, Ming
    SCIENTIFIC PROGRAMMING, 2021, 2021