A didactic approach to quantum machine learning with a single qubit

被引:2
|
作者
Tapia, Elena Pena [1 ]
Scarpa, Giannicola [2 ]
Pozas-Kerstjens, Alejandro [3 ]
机构
[1] Univ Politecn Madrid, Madrid 28031, Spain
[2] Univ Politecn Madrid, Escuela Ten Super Ingn Sistemas Informat, Madrid 28031, Spain
[3] UCM, Inst Ciencias Matemat CSIC, UAM, UC3M, Madrid 28049, Spain
关键词
quantum machine learning; neural networks; fraud detection; supervised learning; NETWORKS;
D O I
10.1088/1402-4896/acc5b8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper presents, via an explicit example with a real-world dataset, a hands-on introduction to the field of quantum machine learning (QML). We focus on the case of learning with a single qubit, using data re-uploading techniques. After a discussion of the relevant background in quantum computing and machine learning we provide a thorough explanation of the data re-uploading models that we consider, and implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK. We find that, as in the case of classical neural networks, the number of layers is a determining factor in the final accuracy of the models. Moreover, and interestingly, the results show that single-qubit classifiers can achieve a performance that is on-par with classical counterparts under the same set of training conditions. While this cannot be understood as a proof of the advantage of quantum machine learning, it points to a promising research direction, and raises a series of questions that we outline.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Reducing qubit budget in quantum machine learning
    Pan, Jie
    [J]. NATURE COMPUTATIONAL SCIENCE, 2021, 1 (09): : 565 - 565
  • [2] Reducing qubit budget in quantum machine learning
    Jie Pan
    [J]. Nature Computational Science, 2021, 1 : 565 - 565
  • [3] A DIDACTIC APPROACH TO THE MACHINE LEARNING APPLICATION TO WEATHER FORECAST
    Raffaele, Marcello
    Caccamo, Maria Teresa
    Castorina, Giuseppe
    Lanza, Stefania
    Munao, Gianmarco
    Randazzo, Giovanni
    Magazu, Salvatore
    [J]. ATTI ACCADEMIA PELORITANA DEI PERICOLANTI-CLASSE DI SCIENZE FISICHE MATEMATICHE E NATURALI, 2021, 99 (S1):
  • [4] Vocabulary selection for didactic purposes: report on a machine learning approach
    Goethals, Patrick
    Tezcan, Arda
    Degraeuwe, Jasper
    [J]. ARGENTINIAN JOURNAL OF APPLIED LINGUISTICS, 2019, 7 (02): : 34 - 51
  • [5] Learning quantum Hamiltonians from single-qubit measurements
    Che, Liangyu
    Wei, Chao
    Huang, Yulei
    Zhao, Dafa
    Xue, Shunzhong
    Nie, Xinfang
    Li, Jun
    Lu, Dawei
    Xin, Tao
    [J]. PHYSICAL REVIEW RESEARCH, 2021, 3 (02):
  • [6] Learning quantum phases via single-qubit disentanglement
    An, Zheng
    Cao, Chenfeng
    Xu, Cheng-Qian
    Zhou, D. L.
    [J]. QUANTUM, 2024, 8
  • [7] Optimization of quantum-dot qubit fabrication via machine learning
    Mei, Antonio B.
    Milosavljevic, Ivan
    Simpson, Amanda L.
    Smetanka, Valerie A.
    Feeney, Colin P.
    Seguin, Shay M.
    Ha, Sieu D.
    Ha, Wonill
    Reed, Matthew D.
    [J]. APPLIED PHYSICS LETTERS, 2021, 118 (20)
  • [8] Quantum-Tailored Machine-Learning Characterization of a Superconducting Qubit
    Genois, Elie
    Gross, Jonathan A.
    Di Paolo, Agustin
    Stevenson, Noah J.
    Koolstra, Gerwin
    Hashim, Akel
    Siddiqi, Irfan
    Blais, Alexandre
    [J]. PRX QUANTUM, 2021, 2 (04):
  • [9] Experimental pairwise entanglement estimation for an N-qubit system: A machine learning approach for programming quantum hardware
    Thompson, Nathan L.
    Nguyen, N. H.
    Behrman, E. C.
    Steck, James E.
    [J]. QUANTUM INFORMATION PROCESSING, 2020, 19 (11)
  • [10] Experimental pairwise entanglement estimation for an N-qubit systemA machine learning approach for programming quantum hardware
    Nathan L. Thompson
    N. H. Nguyen
    E. C. Behrman
    James E. Steck
    [J]. Quantum Information Processing, 2020, 19