Bayesian Robustness: A Nonasymptotic Viewpoint

被引:2
|
作者
Bhatia, Kush [1 ]
Ma, Yi-An [2 ]
Dragan, Anca D. [3 ]
Bartlett, Peter L. [3 ,4 ]
Jordan, Michael I. [3 ,4 ]
机构
[1] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[2] Univ Calif San Diego, Halicioglu Data Sci Inst, La Jolla, CA USA
[3] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA USA
[4] Univ Calif Berkeley, Dept Stat, Berkeley, CA USA
基金
美国国家科学基金会;
关键词
Huber contamination; MCMC methods; Robust statistics; CONVERGENCE;
D O I
10.1080/01621459.2023.2174121
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the problem of robustly estimating the posterior distribution for the setting where observed data can be contaminated with potentially adversarial outliers. We propose Rob-ULA, a robust variant of the Unadjusted Langevin Algorithm (ULA), and provide a finite-sample analysis of its sampling distribution. In particular, we show that after T = O (d/eacc) iterations, we can sample from pT such that dist(pT, p*) = e(acc) + O(e), where e is the fraction of corruptions and dist represents the squared 2-Wasserstein distance metric. Our results for the class of posteriors p* which satisfy log-concavity and smoothness assumptions. We corroborate our theoretical analysis with experiments on both synthetic and real-world datasets for mean estimation, regression and binary classification. Supplementary materials for this article are available online.
引用
收藏
页码:1112 / 1123
页数:12
相关论文
共 50 条
  • [1] HUNGARIAN CONSTRUCTIONS FROM THE NONASYMPTOTIC VIEWPOINT
    BRETAGNOLLE, J
    MASSART, P
    [J]. ANNALS OF PROBABILITY, 1989, 17 (01): : 239 - 256
  • [2] Nonasymptotic approach to Bayesian semiparametric inference
    Panov, M. E.
    [J]. DOKLADY MATHEMATICS, 2016, 93 (02) : 155 - 158
  • [3] Nonasymptotic approach to Bayesian semiparametric inference
    M. E. Panov
    [J]. Doklady Mathematics, 2016, 93 : 155 - 158
  • [4] Spectral Methods for Passive Imaging: Nonasymptotic Performance and Robustness
    Lee, Kiryung
    Krahmer, Felix
    Romberg, Justin
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2018, 11 (03): : 2110 - 2164
  • [5] An engineering viewpoint on biological robustness
    Mustafa Khammash
    [J]. BMC Biology, 14
  • [6] An engineering viewpoint on biological robustness
    Khammash, Mustafa
    [J]. BMC BIOLOGY, 2016, 14
  • [7] Robustness in Bayesian nonparametrics
    Bose, Sudip
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2017, 82 : 161 - 169
  • [8] Bayesian robustness and stability
    Kadane, J
    Srinivasan, C
    [J]. BAYESIAN ROBUSTNESS, 1996, 29 : 81 - 100
  • [9] Nonparametric Bayesian robustness
    Ruggeri, Fabrizio
    [J]. CHILEAN JOURNAL OF STATISTICS, 2010, 1 (02): : 51 - 68
  • [10] ROBUSTNESS IN BAYESIAN-INFERENCE
    MENTEN, TG
    [J]. BIOMETRICS, 1981, 37 (01) : 187 - 187